上海市静安区、青浦区2026届数学高一上期末学业质量监测模拟试题含解析_第1页
上海市静安区、青浦区2026届数学高一上期末学业质量监测模拟试题含解析_第2页
上海市静安区、青浦区2026届数学高一上期末学业质量监测模拟试题含解析_第3页
上海市静安区、青浦区2026届数学高一上期末学业质量监测模拟试题含解析_第4页
上海市静安区、青浦区2026届数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市静安区、青浦区2026届数学高一上期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.,则A.1 B.2C.26 D.102.已知实数,,且,则的最小值为()A. B.C. D.3.设、是两个非零向量,下列结论一定成立的是()A.若,则B.若,则存在实数,使得C若,则D.若存在实数,使得,则|4.已知,,函数的零点为c,则()A.c<a<b B.a<c<bC.b<a<c D.a<b<c5.函数的增区间是A. B.C. D.6.若直线与直线垂直,则()A.6 B.4C. D.7.一个几何体的三视图如图所示,则该几何体的表面积为A. B.C. D.8.已知曲线的图像,,则下面结论正确的是()A.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线9.已知,则直线通过()象限A.第一、二、三 B.第一、二、四C.第一、三、四 D.第二、三、四10.定义在上的函数满足,且当时,,若关于的方程在上至少有两个实数解,则实数的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,又有定义在R上函数满足:(1),,均恒成立;(2)当时,,则_____,函数在区间中的所有零点之和为_______.12.已知函数,若,则的取值范围是__________13.定义域为上的函数满足,且当时,,若,则a的取值范围是______14.已知为奇函数,,则____________15.已知实数x,y满足条件,则的最大值___________.16.若,是夹角为的两个单位向量,则,的夹角为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为万元,并且每生产百台的生产成本为万元(总成本固定成本生产成本).销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润销售收入总成本);(2)工厂生产多少台产品时,可使盈利最多?18.已知长方体AC1中,棱AB=BC=3,棱BB1=4,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F.(1)求证A1C⊥平面EBD;(2)求二面角B1—BE—A1的正切值.19.已知函数.(Ⅰ)求的单调区间;(Ⅱ)求函数的对称轴和对称中心.20.已知函数.(1)若,求的解集;(2)若为锐角,且,求的值.21.已知全集,集合,.(1)当时,求;(2)若,且,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意,由函数的解析式可得,进而计算可得答案.【详解】根据题意,,则;故选B.【点睛】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.2、C【解析】由题可得,则由展开利用基本不等式可求.【详解】,,且,则,,当且仅当时,等号成立,故的最小值为.故选:C.3、B【解析】利用向量共线定理、垂直数量积为0来综合判断.【详解】A:当、方向相反且时,就可成立,A错误;B:若,则、方向相反,故存在实数,使得,B正确;C:若,则说明,不一定有,C错误;D:若存在实数,使得,则,D错误.故选:B4、B【解析】由函数零点存在定理可得,又,,从而即可得答案.【详解】解:因为在上单调递减,且,,所以的零点所在区间为,即.又因为,,所以a<c<b故选:B.5、A6、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.7、D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.8、D【解析】先将转化为,再根据三角函数图像变换的知识得出正确选项.【详解】对于曲线,,要得到,则把上各点的横坐标缩短到原来的倍,纵坐标不变,得到,再把得到的曲线向左平移个单位长度,得到,即得到曲线.故选:D.9、A【解析】根据判断、、的正负号,即可判断直线通过的象限【详解】因为,所以,①若则,,直线通过第一、二、三象限②若则,,直线通过第一、二、三象限【点睛】本题考查直线,作为选择题10、C【解析】把问题转化为函数在上的图象与直线至少有两个公共点,再数形结合,求解作答.【详解】函数满足,当时,,则当时,,当时,,关于的方程在上至少有两个实数解,等价于函数在上的图象与直线至少有两个公共点,函数的图象是恒过定点的动直线,函数在上的图象与直线,如图,观察图象得:当直线过点时,,将此时的直线绕点A逆时针旋转到直线的位置,直线(除时外)与函数在上的图象最多一个公共点,此时或或a不存在,将时的直线(含)绕A顺时针旋转到直线(不含直线)的位置,旋转过程中的直线与函数在上的图象至少有两个公共点,此时,所以实数的取值范围为.故选:C【点睛】方法点睛:图象法判断函数零点个数,作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.二、填空题:本大题共6小题,每小题5分,共30分。11、①.1②.42【解析】求出的周期和对称轴,再结合图象即可.【详解】由条件可知函数的图象关于对称轴对称,由可知,,则周期,即,函数在区间中的所有零点之和即为函数与函数图象的交点的横坐标之和,当时,为单调递增函数,,,且区间关于对称,又∵由已知得也是的对称轴,∴只需用研究直线左侧部分即可,由图象可知左侧有7个交点,则右侧也有7个交点,将这14个交点的横坐标从小到大排列,第个数记为,由对称性可知,则,同理,…,,∴.故答案为:,.12、【解析】画出函数图象,可得,,再根据基本不等式可求出.【详解】画出的函数图象如图,不妨设,因为,则由图可得,,可得,即,又,当且仅当取等号,因为,所以等号不成立,所以解得,即的取值范围是.故答案为:.13、【解析】根据,可得函数图象关于直线对称,当时,,可设,根据,即可求解;【详解】解:,的函数图象关于直线对称,函数关于y轴对称,当时,,那么时,,可得,由,得解得:;故答案为.【点睛】本题考查了函数的性质的应用及不等式的求解,属于中档题.14、【解析】根据奇偶性求函数值.【详解】因为奇函数,,所以.故答案为:.15、【解析】利用几何意义,设,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,即可求解.【详解】由题意作出如下图形:令,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,当直线与圆相切时,在直角三角形OAB中,,∴,∴.故答案为:16、【解析】由题得,,再利用向量的夹角公式求解即得解.【详解】由题得,所以.所以,的夹角为.故答案为:【点睛】本题主要考查平面向量的模和数量积的计算,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当工厂生产百台时,可使赢利最大为万元【解析】(1)先求出,再根据求解;(2)先求出分段函数每一段的最大值,再比较即得解.【详解】解:(1)由题意得,(2)当时,函数递减,(万元)当时,函数,当时,有最大值为(万元)所以当工厂生产百台时,可使赢利最大为万元【点睛】本题主要考查函数的解析式的求法,考查分段函数的最值的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1)证明见解析(2)【解析】(1)先证明平面,则,再证明平面,则,从而即可证明A1C⊥平面EBD;(2)由平面,又,则,进而可得是二面角平面角,在中,求出,即可在中求出,从而即可得答案.【小问1详解】证明:平面,,又,,平面,,又平面,,且,,平面,,又,A1C⊥平面EBD;【小问2详解】解:平面,又,是二面角的平面角,在中,,在中,,.19、(1)单调递增区间为,单调递减区间为:;(2)对称中心为:,对称轴方程为:.【解析】详解】试题分析:(1)将看作一个整体,根据余弦函数的单调区间求解即可.(2)将看作一个整体,根据余弦函数的对称中心和对称轴建立方程可求得函数的对称轴和对称中心试题解析:(1)由,得,∴函数的单调递增区间为;由,得,∴函数的单调递减区间为(2)令,得,∴函数图象的对称轴方程为:.令,得,∴函数图象的对称中心为.20、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论