版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省齐齐哈尔十一中学2026届数学高一上期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,则函数的值域为()A. B.C. D.2.的值是A.0 B.C. D.13.某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在用分层抽样的方法抽取的样本容量为35,则应抽取高一学生人数为()A.8 B.11C.16 D.104.将函数的图象上所有点的横坐标缩小到原来的倍,纵坐标保持不变,得到函数的图象,若,则的最小值为()A. B.C. D.5.下列函数中哪个是幂函数()A. B.C. D.6.下列各组中的两个函数表示同一函数的是()A. B.y=lnx2,y=2lnxC D.7.若,,则sin=A. B.C. D.8.下列函数中,最小值是的是()A. B.C. D.9.已知O是所在平面内的一定点,动点P满足,则动点P的轨迹一定通过的()A.内心 B.外心C.重心 D.垂心10.已知直线x+3y+n=0在x轴上的截距为-3,则实数n的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为直角三角形的三边长,为斜边长,若点在直线上,则的最小值为__________12.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.13.在直角坐标系中,直线的倾斜角________14.定义在上的偶函数满足,且在上是减函数,若、是钝角三角形的两个锐角,对(1),为奇数;(2);(3);(4);(5).则以上结论中正确的有______________.(填入所有正确结论的序号).15.若,,则等于_________.16.给出下列说法:①和直线都相交的两条直线在同一个平面内;②三条两两相交的直线一定在同一个平面内;③有三个不同公共点的两个平面重合;④两两相交且不过同一点的四条直线共面其中正确说法的序号是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=2x,g(x)=(4﹣lnx)•lnx+b(b∈R)(1)若f(x)>0,求实数x的取值范围;(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求实数b的取值范围;18.已知函数的定义域为(1)当时,求函数的值域;(2)若函数在定义域上是减函数,求的取值范围;(3)求函数在定义域上的最大值及最小值,并求出函数取最值时的值19.已知函数.(1)直接写出的单调区间,并选择一个单调区间根据定义进行证明;(2)解不等式.20.一种专门占据内存的计算机病毒,能在短时间内感染大量文件,使每个文件都不同程度地加长,造成磁盘空间的严重浪费.这种病毒开机时占据内存2KB,每3分钟后病毒所占内存是原来的2倍.记x分钟后的病毒所占内存为yKB.(1)求y关于x的函数解析式;(2)如果病毒占据内存不超过1GB(1GB=21021.记函数的定义域为集合,函数的定义域为集合(Ⅰ)求集合;(Ⅱ)若,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.【详解】依题意,函数,,令,则在上单调递增,即,于是有,当时,,此时,,当时,,此时,,所以函数的值域为.故选:B2、B【解析】利用诱导公式和和差角公式直接求解.【详解】故选:B3、A【解析】先求出高一学生的人数,再利用抽样比,即可得到答案;【详解】设高一学生的人数为人,则高二学生人数为,高三学生人数为,,,故选:A4、D【解析】求出g(x)解析式,作出g(x)图像,根据图像即可求解﹒【详解】由题得,,,∵,∴=1且=-1或且=1,作的图象,∴的最小值为=,故选:D5、A【解析】直接利用幂函数的定义判断即可【详解】解:幂函数是,,显然,是幂函数.,,都不满足幂函数的定义,所以A正确故选:A【点睛】本题考查了幂函数的概念,属基础题.6、D【解析】逐项判断函数的定义域与对应法则是否相同,即可得出结果.【详解】对于A,
定义域为,而定义域为,定义域相同,但对应法则不同,故不是同一函数,排除A;对于B,定义域,而定义域为,所以定义域不同,不是同一函数,排除B;对于C,
定义域为,而定义域为,所以定义域不同,不是同一函数,排除C;对于D,与的定义域均为,且,对应法则一致,所以是同一函数,D正确.故选:D7、B【解析】因为,,所以sin==,故选B考点:本题主要考查三角函数倍半公式的应用点评:简单题,注意角的范围8、B【解析】应用特殊值及基本不等式依次判断各选项的最小值是否为即可.【详解】A:当,则,,所以,故A不符合;B:由基本不等式得:(当且仅当时取等号),符合;C:当时,,不符合;D:当取负数,,则,,所以,故D不符合;故选:B.9、A【解析】表示的是方向上的单位向量,画图象,根据图象可知点在的角平分线上,故动点必过三角形的内心.【详解】如图,设,,已知均为单位向量,故四边形为菱形,所以平分,由得,又与有公共点,故三点共线,所以点在的角平分线上,故动点的轨迹经过的内心.故选:A.10、B【解析】根据题意,分析可得点(﹣3,0)在直线x+3y+n=0上,将点的坐标代入直线方程,计算可得答案【详解】根据题意,直线x+3y+n=0在x轴上的截距为﹣3,则点(﹣3,0)在直线x+3y+n=0上,即(﹣3)×+n=0,解可得:n=3;故选B【点睛】本题考查直线的一般式方程以及截距的计算,关键是掌握直线一般方程的形式,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】∵a,b,c为直角三角形中的三边长,c为斜边长,∴c=,又∵点M(m,n)在直线l:ax+by+2c=0上,∴m2+n2表示直线l上的点到原点距离的平方,∴m2+n2的最小值为原点到直线l距离的平方,由点到直线的距离公式可得d==2,∴m2+n2的最小值为d2=4,故答案为4.12、(1)(2),【解析】(1)根据角的终边经过点求,再由题意得周期求即可;(2)根据正弦函数的单调性求单调区间即可.【小问1详解】因为角的终边经过点,所以,若时,的最小值为可知,∴【小问2详解】令,解得故单调递增区间为:,13、##30°【解析】由直线方程得斜率,由斜率得倾斜角【详解】试题分析:直线化成,可知,而,故故答案为:14、(1)(4)(5)【解析】令,结合偶函数得到,根据题意推出函数的周期为,可得(1)正确;根据函数在上是减函数,结合周期性可得在上是增函数,利用、是钝角三角形的两个锐角,结合正弦函数、余弦函数的单调性可得,,再利用函数的单调性可得(4)(5)正确,当时,可得(2)(3)不正确.【详解】∵,令,得,又是偶函数,则,∴,且,可得函数是周期为2的函数.故,为奇数.故(1)正确;∵、是钝角三角形的两个锐角,∴,可得,∵在区间上是增函数,,∴,即钝角三角形的两个锐角、满足,由在区间上是减函数得,∵函数是周期为2的函数且在上是减函数,∴在上也是减函数,又函数是定义在上的偶函数,可得在上是增函数.∵钝角三角形的两个锐角、满足,,且,,∴,.故(4)(5)正确;当时,,,,,故(2)(3)不正确.故答案为:(1)(4)(5)【点睛】关键点点睛:利用函数的奇偶性和单调性求解是解题关键.15、【解析】由同角三角函数基本关系求出的值,再由正弦的二倍角公式即可求解.【详解】因为,,所以,所以,故答案为:.16、④【解析】利用正方体可判断①②的正误,利用公理3及其推论可判断③④的正误.【详解】如图,在正方体中,,,但是异面,故①错误.又交于点,但不共面,故②错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故③错误.如图,因为,故共面于,因为,故,故即,而,故,故即即共面,故④正确.故答案为:④三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(0,+∞)(2)[,+∞)【解析】(1)解指数不等式2x>2﹣x可得x>﹣x,运算即可得解;(2)由二次函数求最值可得函数g(x)的值域为,函数f(x)的值域为A=[,+∞),由题意可得A∩B≠,列不等式b+4运算即可得解.【详解】解:(1)因为f(x)>0⇔2x0,∴2x>2﹣x,∴x>﹣x,即x>0∴实数x的取值范围为(0,+∞)(2)设函数f(x),g(x)在区间[1,+∞)的值域分别为A,B∵f(x)=2x在[1,+∞)上单调递增,又∴A=[,+∞)∵g(x)=(4﹣lnx)•lnx+b=﹣(lnx﹣2)2+b+4∵x∈[1,+∞),∴lnx∈[0,+∞),∴g(x)≤b+4,即依题意可得A∩B≠,∴b+4,即b∴实数b的取值范围为[,+∞)【点睛】本题考查了指数不等式的解法,主要考查了二次函数最值的求法,重点考查了集合的运算,属中档题.18、(1);(2);(3)见解析【解析】(1)函数,所以函数的值域为(2)若函数在定义域上是减函数,则任取且都有成立,即,只要即可,由,故,所以,故的取值范围是;(3)当时,函数在上单调增,无最小值,当时取得最大值;由(2)得当时,在上单调减,无最大值,当时取得最小值;当时,函数在上单调减,在上单调增,无最大值,当时取得最小值.【点睛】利用函数的单调性求值域是求值域的一种重要方法.特别注意当函数含有参数时,而参数又会影响了函数的单调性,从而需要分类讨论求函数的值域19、(1)在区间,上单调递增,在区间上单调递减,证明见解析(2)【解析】(1)根据增减函数的定义,利用作差法比较与0的大小即可;(2)根据三角函数的性质可得、,利用函数的单调性列出三角不等式,解不等式即可.【小问1详解】在区间,上单调递增,在区间上单调递减.①选区间进行证明.,,且,有,由,所以,由,所以,所以,,所以在区间上单调递增.②选区间进行证明.,,且,有,由,,所以,,所以在区间上单调递减.③选区间进行证明.参考②的证明,在区间上单调递增.【小问2详解】,因为,,在区间上单调递减,所以,(),所以,所求解集为.20、(1)y=2x3(2)57分钟【解析】(1)根据题意可得,y关于x的函数解析式;(2)先根据题意,换算病毒占据的最大内存1GB【小问1详解】因为这种病毒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国化妆品原料行业技术创新市场需求竞争投资分析规划研究报告
- 王君的老王课件
- 2025年重庆三峡职业学院单招职业适应性考试题库附答案解析
- 2023年安徽新闻出版职业技术学院单招职业倾向性考试题库附答案解析
- 2024年湖北省宜昌市单招职业倾向性测试题库附答案解析
- 2025年天津工艺美术职业学院单招职业技能考试题库附答案解析
- 2023年衡阳幼儿师范高等专科学校单招职业适应性考试模拟测试卷附答案解析
- 2026年上半年陕西省中小学教师资格考试(笔试)备考题库及参考答案(培优)
- 2025年安徽邮电职业技术学院单招职业技能测试模拟测试卷附答案解析
- 2024年炎黄职业技术学院单招职业适应性测试模拟测试卷附答案解析
- 干部群众工作课件
- 百年未有之大变局课件
- 2025年时事政治考试100题及答案
- 2025年北京市建筑施工作业人员安全生产知识教育培训考核试卷E卷及答案
- 中铁群安员培训
- 浙江省嵊州市2025-2026学年高二上数学期末质量检测试题含解析
- 2024年云南省第一人民医院招聘考试真题
- 思政大一考试试卷及答案
- 采用烟气挡板法再热汽温控制系统的研究
- 班组长培训课件(36张)
- 公路水运工程施工企业主要负责人和安全生产管理人员模拟试题库含答案
评论
0/150
提交评论