版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省衡中同卷2026届高二上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是一水平放置的青花瓷.它的外形为单叶双曲面,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面,且其外形上下对称.花瓶的最小直径为,瓶口直径为,瓶高为,则该双曲线的虚轴长为()A. B.C. D.452.已知直线,,点是抛物线上一点,则点到直线和的距离之和的最小值为()A.2 B.C.3 D.3.已知随机变量服从正态分布,且,则()A.0.1 B.0.2C.0.3 D.0.44.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,如果输入a=102,b=238,则输出的a的值为()A.17 B.34C.36 D.685.已知圆过点,,且圆心在轴上,则圆的方程是()A. B.C. D.6.已知点在平面α上,其法向量,则下列点不在平面α上的是()A. B.C. D.7.甲,乙、丙、丁、戊共5人随机地排成一行,则甲、乙相邻,丙、丁不相邻的概率为()A. B.C. D.8.已知等比数列的前n项和为,且,则()A.20 B.30C.40 D.509.第届全运会于年月在陕西西安顺利举办,其中水上项目在西安奥体中心游泳跳水馆进行,为了应对比赛,大会组委会将对泳池进行检修,已知泳池深度为,其容积为,如果池底每平方米的维修费用为元,设入水处的较短池壁长度为,且据估计较短的池壁维修费用与池壁长度成正比,且比例系数为,较长的池壁维修费用满足代数式,则当泳池的维修费用最低时值为()A. B.C. D.10.已知函数,则()A.函数在上单调递增B.函数上有两个零点C.函数有极大值16D.函数有最小值11.下列四个命题中为真命题的是()A.设p:1<x<2,q:2x>1,则p是q的必要不充分条件B.命题“”的否定是“”C.函数的最小值是4D.与的图象关于直线y=x对称12.已知直线l:过椭圆的左焦点F,与椭圆在x轴上方的交点为P,Q为线段PF的中点,若,则椭圆的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.中国三大名楼之一的黄鹤楼因其独特的建筑结构而闻名,其外观有五层而实际上内部有九层,隐喻“九五至尊”之意,为迎接2022年春节的到来,有网友建议在黄鹤楼内部挂灯笼进行装饰,若在黄鹤楼内部九层塔楼共挂1533盏灯笼,且相邻的两层中,下一层的灯笼数是上一层灯笼数的两倍,则内部塔楼的顶层应挂______盏灯笼14.已知抛物线的焦点F在直线上,过点F的直线l与抛物线C相交于A,B两点,O为坐标原点,△的面积是△面积的4倍,则直线l的方程为____________15.已知双曲线两焦点之间的距离为4,则双曲线的渐近线方程是___________.16.已知过点作抛物线的两条切线,切点分别为A,B,直线AB经过抛物线C的焦点F,则___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆经过点,椭圆E的一个焦点为(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于A,B两点.求的最大值18.(12分)已知等比数列的公比,且,的等差中项为,.(1)求数列的通项公式;(2)设,求数列的前项和.19.(12分)如图,在四棱锥中,四边形为正方形,已知平面,且,E为中点(1)证明:平面;(2)证明:平面平面20.(12分)如图,在四棱锥中,平面底面ABCD,,,,,(1)证明:是直角三角形;(2)求平面PCD与平面PAB的夹角的余弦值21.(12分)已知椭圆上的点到左、右焦点、的距离之和为4,且右顶点A到右焦点的距离为1.(1)求椭圆的方程;(2)直线与椭圆交于不同两点,,记的面积为,当时求的值.22.(10分)已知函数(1)当时,求函数的极值;(2)当时,若恒成立,求实数a的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设双曲线方程为,,由已知可得,并求得双曲线上一点的坐标,把点的坐标代入双曲线方程,求解,即可得到双曲线的虚轴长【详解】设点是双曲线与截面的一个交点,设双曲线的方程为:,花瓶的最小直径,则,由瓶口直径为,瓶高为,可得,故,解得,该双曲线的虚轴长为故选:2、C【解析】由抛物线的定义可知点到直线和的距离之和的最小值即为焦点到直线的距离.【详解】解:由题意,抛物线的焦点为,准线为,所以根据抛物线的定义可得点到直线的距离等于,所以点到直线和的距离之和的最小值即为焦点到直线的距离,故选:C.3、A【解析】利用正态分布的对称性和概率的性质即可【详解】由,且则有:根据正态分布的对称性可知:故选:A4、B【解析】根据程序框图所示代入运行即可.【详解】初始输入:;第一次运算:;第二次运算:;第三次运算:;第四次运算:;结束,输出34.故选:B.5、B【解析】根据圆心在轴上,设出圆的方程,把点,的坐标代入圆的方程即可求出答案.【详解】因为圆的圆心在轴上,所以设圆的方程为,因为点,在圆上,所以,解得,所以圆的方程是.故选:B.6、D【解析】根据法向量的定义,利用向量垂直对四个选项一一验证即可.【详解】对于A:记,则.因为,所以点在平面α上对于B:记,则.因为,所以点在平面α上对于C:记,则.因为,所以点在平面α上对于D:记,则.因为,所以点不在平面α上.故选:D7、A【解析】先求出所有的基本事件,再求出甲、乙相邻,丙、丁不相邻的基本事件,根据古典概型的概率公式求解即可【详解】甲,乙、丙、丁、戊共5人随机地排成一行有种方法,甲、乙相邻,丙、丁不相邻的排法为先将甲、乙捆绑在一起,再与戊进行排列,然后丙、丁从3个空中选2个空插入,则共有种方法,所以甲、乙相邻,丙、丁不相邻的概率为,故选:A8、B【解析】利用等比数列的前n项和公式即可求解.【详解】设等比数列的首项为,公比为,则,由得,即,解得或(舍),且代入①得,则,所以.故选:B.9、A【解析】根据题意得到泳池维修费用的的解析式,再利用导数求出最值即可【详解】解:设泳池维修的总费用为元,则由题意得,则,令,解得,当时,;当时,,故当时,有最小值因此,当较短池壁为时,泳池的总维修费用最低故选A10、C【解析】对求导,研究的单调性以及极值,再结合选项即可得到答案.【详解】,由,得或,由,得,所以在上递增,在上递减,在上递增,所以极大值为,极小值为,所以有3个零点,且无最小值.故选:C11、D【解析】根据推出关系和集合的包含关系判断A,根据全称命题的否定形式可判断B,根据对钩函数性质即三角函数的性质可判断C,根据反函数的图像性质可判断D.【详解】解:对于选项A:是的真子集,所以命题p是q的充分不必要条件,故A错误;对于选项B:命题“”的否定是“”,故B错误;对于选项C:函数,当时,,函数单调递减,当时取最小值,故C错误;对于选项D:与互为反函数,故图象关于直线y=x对称,故D正确.12、D【解析】由直线的倾斜角为,可得,结合,可推得是等边三角形,可得,计算可得离心率【详解】直线:过椭圆的左焦点,设椭圆的右焦点为,所以,又是的中点,是的中点,所以,又,所以,又,所以是等边三角形,所以,又在椭圆上,所以,所以,所以离心率为,故选:二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件,各层灯笼数从上到下排成一列构成等比数列,利用等比数列前n项和公式计算作答.【详解】依题意,各层灯笼数从上到下排成一列构成等比数列,公比,前9项和为1533,于是得,解得,所以内部塔楼的顶层应挂3盏灯笼.故答案为:314、【解析】设A,B分别为,由焦点在已知直线上求F坐标及抛物线方程,再根据题设三角形的面积关系可得,并设直线l为,联立抛物线应用韦达定理求参数m,即可知直线l的方程.【详解】设点A,B的坐标分别为,直线,令可得,故焦点F的坐标为,所以,由,,而△的面积是△面积的4倍,所以,即,设直线l为,联立方程,消去x后整理为,所以,代入,有,可得,则直线l的方程为故答案为:.【点睛】关键点点睛:根据抛物线焦点位置及其所在直线求抛物线方程,由面积关系得到交点纵坐标的数量关系,注意交点在x轴两侧,再设直线联立抛物线求参数即可.15、.【解析】根据条件求出c,进而根据求出a,最后写出渐近线方程.【详解】因为双曲线两焦点之间的距离为4,所以,解得,所以,,双曲线的渐近线方程是.故答案为:.16、【解析】设出点的坐标,与抛物线方程联立,结合题意和韦达定理,求得抛物线的方程为,直线AB的方程为,进而求得的值.【详解】设,在抛物线,过切点A与抛物线相切的直线的斜率为,则以为切点的切线方程为,联立方程组,整理得,则,整理得,所以,解得,所以以为切点的切线方程为,即,同理,设,在抛物线,过切点B与抛物线相切的直线,又因为在切线和,所以,所以直线AB的方程为,又直线AB过抛物线的焦点,所以令,可得,即,所以抛物线的方程为,直线AB的方程为,联立方程组,整理得或,所以,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用代入法,结合焦点的坐标、椭圆中的关系进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式、根与系数关系、弦长公式、基本不等式进行求解即可.【小问1详解】依题意:,解得,,∴椭圆E的方程为;【小问2详解】当直线l的斜率存在时,设,,由得由得.由,得当且仅当,即时等号成立当直线l的斜率不存在时,,∴的最大值为18、(1);(2)【解析】(1)将题目的条件写成的形式并求解,写出等比等比数列通项公式;(2)利用错位相减法求和.小问1详解】由题意可得,,∴,∵,∴,∴数列的通项公式为.【小问2详解】,∴①,②,①-②可得,∴.19、(1)证明见解析(2)证明见解析【解析】(1)设与交于点,连结,易证,再利用线面平行的判断定理即可证得答案;(2)利用线面垂直的判定定理可得平面,再由面面垂直的判断定理即可.【小问1详解】连接交于,连接因为底面是正方形,所以为中点,因为在中,是的中点,所以,因为平面平面,所以平面【小问2详解】侧棱底面底面,所以,因为底面是正方形,所以,因为与为平面内两条相交直线,所以平面,因为平面,所以平面平面.20、(1)证明见解析(2)【解析】(1)连接BD,在四边形ABCD中求得,在中,取得,得到,由线面垂直的性质证得平面,得到,再由线面垂直的判定定理,证得平面PBD,进而得到,即可证得是直角三角形(2)以为原点,以所在直线为x轴,过点且与平行直线为y轴,所在直线为z轴,建立的空间直角坐标系,分别求得平面和平面的法向量,利用向量的夹角公式,即可求解.【小问1详解】证明:如图所示,连接BD,因为四边形中,可得,,,所以,,则在中,由余弦定理可得,所以,所以因为平面底面,平面底面,底面ABCD,所以平面PAB,因为平面PAB,所以,因为,,所以平面PBD因为平面PBD,所以,即是直角三角形【小问2详解】解:由(1)知平面PAB,取AB的中点O,连接PO,因为,所以,因为平面,平面底面,平面底面,所以底面,以为原点,以所在直线为x轴,过点且与平行的直线为y轴,所在直线为z轴,建立如图所示的空间直角坐标系,设,则,,,,,可得,,,设平面的一个法向量为,则,令,可得,,所以,因为是平面的一个法向量,所以,即平面与平面的夹角的余弦值为21、(1)(2)【解析】(1)根据题意得到,,再根据求解即可.(2)首先设,,再根据求解即可.【小问1详解】由题意,,因为右顶点到右焦点的距离为,即,所以,则,所以椭圆的标准方程为.【小问2详解】设,,且根据椭圆的对称性得,联立方程组,整理得,解得,因为的面积为3,可得,解得.22、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年澄迈县教师选调备考题库带答案详解
- 高中物理教学中学生科学思维与创新能力培养的实证研究教学研究课题报告
- 2025年贵州松桃群希高级中学招聘教师备考题库(5名)带答案详解
- 手绘插画风植物与污染研究总结报告
- 黄色艺术风格营销方案演示模板
- 2025年福建新华研学国际旅行社有限责任公司招聘备考题库完整参考答案详解
- 西藏自治区教材编译中心2026年度急需紧缺人才引进7人备考题库及1套完整答案详解
- 2026年度郴州市国资委“英培计划”人才选拔29人备考题库及1套完整答案详解
- 2025年民航上海医院(瑞金医院古北分院)事业编制公开招聘62人备考题库参考答案详解
- 2025年云岩区妇幼保健院面向社会公开招聘编外聘用专业技术人员的备考题库含答案详解
- 2025年榆林市住房公积金管理中心招聘(19人)笔试考试备考题库及答案解析
- 2025年常山县机关事业单位公开招聘编外人员43人笔试考试参考试题及答案解析
- 2025年常州信息职业技术学院单招职业倾向性测试题库附答案
- 2025年云南省人民检察院聘用制书记员招聘(22人)模拟笔试试题及答案解析
- 2025年党的基础知识题库及答案入党理论知识考试试题
- 运动员退役协议书
- GB/T 38082-2025生物降解塑料购物袋
- 2025年10月自考02275计算机基础与程序设计试题及答案版
- 2026国网宁夏电力有限公司招聘高校毕业生统一考试(第一批)备考题库及答案详解(网校专用)
- 探放水工岗位作业风险专项培训讲义
- 2025甘肃酒泉市公安局招聘留置看护岗位警务辅助人员30人(第三批)笔试考试备考试题及答案解析
评论
0/150
提交评论