版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春九台师范高中2026届高一数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.是边AB上的中点,记,,则向量A. B.C. D.2.函数f(x)=lnx+3x-7的零点所在的区间是()A. B.C. D.3.某甲、乙两人练习跳绳,每人练习10组,每组40个.每组计数的茎叶图如下图,则下面结论中错误的一个是()A.甲比乙的极差大B.乙的中位数是18C.甲的平均数比乙的大D.乙的众数是214.已知函数,若函数在上有两个零点,则的取值范围是()A. B.C. D.,5.下列函数中既是奇函数,又是减函数的是()A. B.C D.6.不等式的解集为()A. B.C. D.7.已知角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,则()A. B.C. D.8.函数的大致图像是()A. B.C. D.9.下列函数中,图象的一部分如图所示的是()A. B.C. D.10.已知函数y=(12)x的图象与函数y=logax(a>0,A.[ 2C.[ 8二、填空题:本大题共6小题,每小题5分,共30分。11.已知tanα=3,则sinα(cosα-sinα)=______12.已知为奇函数,,则____________13.已知是定义在R上的偶函数,且在上为增函数,,则不等式的解集为___________.14.已知函数f(x)=(a>0,a≠1)是偶函数,则a=_________,则f(x)的最大值为________.15.总体由编号为,,,,的个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第行的第列数字开始由左到右依次选取两个数字,则选出来的第个个体的编号为__________16.在单位圆中,已知角的终边与单位圆的交点为,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线(1)求证:直线过定点(2)求过(1)的定点且垂直于直线直线方程.18.定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界已知函数当,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;若函数在上是以3为上界的有界函数,求实数a的取值范围19.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元设公司一年内共生产该款手机万部且并全部销售完,每万部的收入为万元,且写出年利润万元关于年产量(万部)的函数关系式;当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润20.2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明2019年10月、11月国外已经存在新冠肺炎病毒),对人类生命形成巨大危害.在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数人),然而国外因国家体制、思想观念的不同,防控不力,新冠肺炎疫情越来越严重.疫情期间造成医用防护用品短缺,某厂家生产医用防护用品需投入年固定成本为万元,每生产万件,需另投入成本为.当年产量不足万件时,(万元);当年产量不小于万件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本)(1)写出年利润(万元)关于年产量(万件)的函数解析式;(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?并求出利润的最大值21.已知函数.(1)判断函数在R上的单调性,并用单调性的定义证明;(2)判断函数的奇偶性,并证明;(3)若恒成立,求实数k的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意得,∴.选C2、C【解析】由函数的解析式求得f(2)f(3)<0,再根据根据函数零点的判定定理可得函数f(x)的零点所在的区间【详解】∵函数f(x)=lnx+3x-7在其定义域上单调递增,∴f(2)=ln2+2×3-7=ln2-1<0,f(3)=ln3+9-7=ln3+2>0,∴f(2)f(3)<0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(2,3),故选C【点睛】本题主要考查求函数的值,函数零点的判定定理,属于基础题3、B【解析】通过茎叶图分别找出甲、乙的最大值以及最小值求出极差即可判断A;找出乙中间的两位数即可判断B;分别求出甲、乙的平均数判断C;观察乙中数据即可判断D;【详解】对于A,由茎叶图可知,甲的极差为,乙的极差为,故A正确;对于B,乙中间两位数为,故中位数为,故B错误;对于C,甲的平均数为,乙的平均数为,故C正确;对于D,乙组数据中出现次数最多为21,故D正确;故选:B【点睛】本题考查了由茎叶图估计样本数据的数字特征,属于基础题.4、D【解析】根据时,一定有一个零点,故只需在时有一个零点即可,列出不等式求解即可.【详解】当时,令,即可得,;故在时,一定有一个零点;要满足题意,显然,令,解得只需,解得.故选:D【点睛】本题考查由函数的零点个数求参数范围,涉及对数不等式的求解,属综合基础题.5、A【解析】根据对数、指数、一次函数的单调性判断BCD,根据定义判断的奇偶性.【详解】因为在定义域内都是增函数,所以BCD错误;因为,所以函数为奇函数,且在上单调递减,A正确.故选:A6、C【解析】将原不等式转化为从而可求出其解集【详解】原不等式可化为,即,所以解得故选:C7、D【解析】根据任意角的三角函数的定义即可求出的值,根据二倍角的正弦公式,即可求出的值【详解】由题意,角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,所以,,所以故选:D8、D【解析】由题可得定义域为,排除A,C;又由在上单增,所以选D.9、D【解析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D10、D【解析】由已知中两函数的图象交于点P( 由指数函数的性质可知,若x0≥2,则0<y由于x0≥2,所以a>1且4a点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于a的不等式是解答的关键,试题比较基础,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查12、【解析】根据奇偶性求函数值.【详解】因为奇函数,,所以.故答案为:.13、【解析】根据题意求出函数的单调区间及所过的定点,进而解出不等式.【详解】因为是定义在R上的偶函数,且在上为增函数,,所以函数在上为减函数,.所以且在上为增函数,,在上为减函数,.所以的解集为:.故答案为:.14、①.②.【解析】根据偶函数f(-x)=f(x)即可求a值;分离常数,根据单调性即可求最大值,或利用基本不等式求最值.【详解】是偶函数,,则,则,即,则,则,则,当且仅当,即,则时取等号,即的最大值为,故答案为:,15、【解析】根据随机数表,依次进行选择即可得到结论.【详解】按照随机数表的读法所得样本编号依次为23,21,15,可知第3个个体的编号为15.故答案为:15.16、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】⑴将直线化为,解不等式组即可得证;⑵由(1)知定点为,结合题目条件计算得直线方程解析:(1)根据题意将直线化为的解得,所以直线过定点(2)由(1)知定点为,设直线的斜率为k,且直线与垂直,所以,所以直线的方程为18、(1)值域为(3,+∞);不是有界函数,详见解析(2)【解析】(1)当a=1时,f(x)=1+因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域为(3,+∞),故不存在常数M>0,使|f(x)|≤M成立,所以函数f(x)在(-∞,0)上不是有界函数.(2)由题意知,|f(x)|≤3在[0,+∞)上恒成立.-3≤f(x)≤3,-4-≤a·≤2-,所以-4·2x-≤a≤2·2x-在[0,+∞)上恒成立.所以≤a≤,设2x=t,h(t)=-4t-,p(t)=2t-,由x∈[0,+∞)得t≥1,设1≤t1<t2,h(t1)-h(t2)=>0,p(t1)-p(t2)=<0,所以h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1,所以实数a的取值范围为[-5,1]19、(1),;(2)当时,y取得最大值57600万元【解析】根据题意,即可求解利润关于产量的关系式为,化简即可求出;由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润【详解】(1)由题意,可得利润关于年产量的函数关系式为,.由可得,当且仅当,即时取等号,所以当时,y取得最大值57600万元【点睛】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润关于年产量的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题20、(1);(2)年产量为万件时,该厂在这一商品的生产中所获利润最大,利润的最大值为万元【解析】(1)由利润销售收入总成本写出分段函数的解析式即可;(2)利用配方法和基本不等式分别求出各段的最大值,再取两个中最大的即可.【详解】(1)当,时,当,时,(2)当,时,,当时,取得最大值(万元)当,时,当且仅当,即时等号成立即时,取得最大值万元综上,所以即生产量为万件时,该厂在这一商品的生产中所获利润最大为万元21、(1)在R上的单调递增,证明见解析;(2)是奇函数,证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津中医药大学第一附属医院招聘20人备考题库及完整答案详解一套
- 3D打印导板在神经外科手术中的精准设计与精准定制
- 2025年宁波市升力同创科技咨询服务有限公司招聘备考题库有答案详解
- 3D打印个性化骨缺损修复支架的血管化策略
- 2型糖尿病神经病变的早期预防社区实践
- 上海市2025年事业单位公开招聘高层次急需紧缺专业技术人才备考题库及完整答案详解1套
- 2025年韶山旅游发展集团招聘中层管理人员备考题库带答案详解
- 2025年马鞍山市住房公积金管理中心编外聘用人员招聘备考题库完整答案详解
- 核工业井巷建设集团有限公司2026年校园招聘备考题库及答案详解参考
- 2025年金华市轨道交通控股集团有限公司财务岗应届毕业生招聘备考题库完整参考答案详解
- 拆迁劳务合同协议
- 2025年云南省交通投资建设集团有限公司下属港投公司社会招聘51人备考题库完整参考答案详解
- 2025中国融通资产管理集团有限公司招聘(230人)(公共基础知识)测试题附答案解析
- 工作交接表-交接表
- 2025年课件-(已瘦身)2023版马原马克思主义基本原理(2023年版)全套教学课件-新版
- 学堂在线 雨课堂 学堂云 医学英语词汇进阶 期末考试答案
- 项目HSE组织机构和职责
- 零基础AI日语-初阶篇智慧树知到期末考试答案章节答案2024年重庆对外经贸学院
- MOOC 理论力学-长安大学 中国大学慕课答案
- JC∕T 942-2022 丁基橡胶防水密封胶粘带
- MOOC 工程材料学-华中科技大学 中国大学慕课答案
评论
0/150
提交评论