版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市蓟州等部分区2026届数学高二上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数f(x)=x(lnx-ax)有两个极值点,则实数a的取值范围是()A.(-∞,0) B.C.(0,1) D.(0,+∞)2.已知关于的不等式的解集是,则的值是()A B.5C. D.73.抛物线的准线方程是,则实数的值为()A. B.C.8 D.4.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.5.有下列三个命题:①“若,则互为相反数”的逆命题;②“若,则”的逆否命题;③“若,则”的否命题.其中真命题的个数是A.0 B.1C.2 D.36.命题“”为真命题一个充分不必要条件是()A. B.C. D.7.已知等比数列的前项和为,若公比,则=()A. B.C. D.8.已知各项均为正数的等比数列{},=5,=10,则=A. B.7C.6 D.9.已知直线,椭圆.若直线l与椭圆C交于A,B两点,则线段AB的中点的坐标为()A. B.C. D.10.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为、,其中,.如果这时气球的高度,则河流的宽度BC为()A. B.C. D.11.下列命题中正确的是()A.抛物线的焦点坐标为B.抛物线的准线方程为x=−1C.抛物线的图象关于x轴对称D.抛物线的图象关于y轴对称12.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,数列是正项等比数列,且,则__________14.设抛物线的准线方程为__________.15.设双曲线C:的焦点为,点为上一点,,则为_____.16.已知数列满足,,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列中,首项,公差,且数列的前项和为(1)求和;(2)设,求数列的前项和18.(12分)在数列中,,,数列满足(1)求证:数列是等比数列,并求出数列的通项公式;(2)数列前项和为,且满足,求的表达式;(3)令,对于大于的正整数、(其中),若、、三个数经适当排序后能构成等差数列,求符合条件的数组.19.(12分)已知:,,:,,且为真命题,求实数的取值范围.20.(12分)已知圆的半径为,圆心在直线上,点在圆上.(1)求圆的标准方程;(2)若原点在圆内,求过点且与圆相切的直线方程.21.(12分)已知圆,其圆心在直线上.(1)求的值;(2)若过点的直线与相切,求的方程.22.(10分)已知中,分别为角的对边,且(1)求;(2)若为边的中点,,求的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点则实数a的取值范围是(0,)故选B2、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D3、B【解析】化简方程为,求得抛物线的准线方程,列出方程,即可求解.【详解】由抛物线,可得,所以,所以抛物线的准线方程为,因为抛物线的准线方程为,所以,解得.故选:B.4、A【解析】由题意可知,对任意的恒成立,可得出对任意的恒成立,利用基本不等式可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,所以,对任意的恒成立,由基本不等式可得,当且仅当时,等号成立,所以,.故选:A.5、B【解析】①写出命题的逆命题,可以进行判断为真命题;②原命题和逆否命题真假性相同,而通过举例得到原命题为假,故逆否命题也为假;③写出命题的否命题,通过举出反例得到否命题为假【详解】①“若,则互为相反数”的逆命题是,若互为相反数,则;是真命题;②“若,则”,当a=-1,b=-2,时不满足,故原命题为假命题,而原命题和逆否命题真假性相同,故得到命题为假;③“若,则”的否命题是若,则,举例当x=5时,不满足不等式,故得到否命题是假命题;故答案为B.【点睛】这个题目考查了命题真假的判断,涉及命题的否定,命题的否命题,逆否命题,逆命题的相关概念,注意原命题和逆否命题的真假性相同,故需要判断逆否命题的真假时,只需要判断原命题的真假6、B【解析】求解命题为真命题的充要条件,再利用集合包含关系判断【详解】命题“”为真命题,则≤1,只有是的真子集,故选项B符合题意故选:B7、A【解析】根据题意,由等比数列的通项公式与前项和公式直接计算即可.【详解】由已知可得.故选:A.8、A【解析】由等比数列的性质知,a1a2a3,a4a5a6,a7a8a9成等比数列,所以a4a5a6=故答案为考点:等比数列的性质、指数幂的运算、根式与指数式的互化等知识,转化与化归的数学思想9、B【解析】联立直线方程与椭圆方程,消y得到关于x的一元二次方程,根据韦达定理可得,进而得出中点的横坐标,代入直线方程求出中点的纵坐标即可.【详解】由题意知,,消去y,得,则,,所以A、B两点中点的横坐标为:,所以中点的纵坐标为:,即线段AB的中点的坐标为.故选:B10、D【解析】由题意得,,,然后在和求出,从而可求出的值【详解】如图,由题意得,,,在中,,在中,,所以,故选:D11、C【解析】根据抛物线的性质逐项分析可得答案.【详解】抛物线的焦点坐标为,故A错误;抛物线的准线方程为,故B错误;抛物线的图象关于x轴对称,故C正确,D错误;故选:C.12、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、##9.5【解析】根据给定条件计算当时,的值,再结合等比数列性质计算作答.【详解】函数,当时,,因数列是正项等比数列,且,则,,同理,令,又,则有,,所以.故答案为:14、【解析】由题意结合抛物线的标准方程确定其准线方程即可.【详解】由抛物线方程可得,则,故准线方程为.故答案为【点睛】本题主要考查由抛物线方程确定其准线方法,属于基础题.15、14【解析】利用双曲线的定义求解即可【详解】由,得,则,因为点为上一点,所以,因为,所以,解得或(舍去),故答案为:1416、【解析】由已知可知即数列是首项为1,公差为1的等差数列,进而可求得数列的通项公式,即可求.【详解】由题意知:,即,而,∴数列是首项为1,公差为1的等差数列,有,∴,则.故答案为:【点睛】关键点点睛:由递推关系求数列的通项,进而得到的通项公式写出项.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)根据题意,结合等差数列的通项公式与求和公式,即可求解;(2)根据题意,求出,结合等差数列求和公式,即可求解.【小问1详解】根据题意,易知;.【小问2详解】根据题意,易知,因为,所以数列是首项为2,公差为的等差数列,故18、(1)证明见解析,;(2);(3).【解析】(1)由已知等式变形可得,利用等比数列的定义可证得结论成立,确定等比数列的首项和公比,可求得数列的通项公式;(2)求得,然后分、两种情况讨论,结合裂项相消法可得出的表达式;(3)求得,分、、三种情况讨论,利用奇数与偶数的性质以及整数的性质可求得、的值,综合可得出结论.【小问1详解】解:由可得,,则,,以此类推可知,对任意的,,则,故数列为等比数列,且该数列的首项为,公比为,故,可得.【小问2详解】解:由(1)知,所以,所以,当n=1时,,当时,.因为满足,所以.【小问3详解】解:,、、这三项经适当排序后能构成等差数列,①若,则,所以,,又,所以,,则;②若,则,则,左边为偶数,右边为奇数,所以,②不成立;③若,同②可知③也不成立综合①②③得,19、【解析】由,为真,可得对任意的恒成立,从而分和求出实数的取值范围,再由,,可得关于的方程有实根,则有,从而可求出实数的取值范围,然后求交集可得结果【详解】解:可化为.若:,为真,则对任意的恒成立.当时,不等式可化为,显然不恒成立,当时,有且,所以.①若:,为真,则关于的方程有实根,所以,即,所以或.②又为真命题,故,均为真命题.所以由①②可得的取值范围为.20、(1)或(2)或【解析】(1)先设出圆的标准方程,利用点在圆上和圆心在直线上得到圆心坐标的方程组,进而求出圆的标准方程;(2)先利用原点在圆内求出圆的方程,设出切线方程,利用圆心到切线的距离等于半径进行求解.【小问1详解】解:设圆的标准方程为,由已知得,解得或,故圆的方程为或.【小问2详解】解:因为,,且原点在圆内,故圆的方程为,则圆心为,半径为,设切线为,即,则,解得或,故切线为或,即或即为所求.21、(1)(2)或【解析】(1)将圆的一般方程化为标准方程,求出圆心,代入直线方程即可求解.(2)设直线的方程为:,利用圆心到直线的距离即可求解.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年湖北黄冈中学专项招聘教师真题
- 2024年辽宁省朝阳市单招职业适应性测试模拟测试卷附答案解析
- 2025年内蒙古包头市单招职业适应性测试题库附答案解析
- 2025年山西机电职业技术学院单招职业适应性考试题库附答案解析
- 2025年浙江工商职业技术学院单招职业适应性考试题库附答案解析
- 2026年云南新兴职业学院单招职业倾向性考试题库附答案
- 2025年浙江农业商贸职业学院单招职业倾向性考试模拟测试卷附答案解析
- 2025年山东省莱芜市单招职业适应性测试模拟测试卷附答案解析
- 2025年安徽电子信息职业技术学院单招职业适应性考试模拟测试卷附答案解析
- 2024年宁夏财经职业技术学院单招综合素质考试题库附答案解析
- 台州路面划线施工技术交底
- 25秋国家开放大学《行政领导学》形考任务1-4参考答案
- 腕关节损伤康复课件
- 全过程工程咨询风险及应对策略
- 施工临时占道申请书
- 肺肉瘤样癌讲解
- 基础地理信息测绘数据更新方案
- 24节气 教学设计课件
- DBJT15-142-2018 广东省建筑信息模型应用统一标准
- 医美咨询师整形培训课件
- 体检中心医护协作体系建设
评论
0/150
提交评论