上海市市北中学2026届高二数学第一学期期末学业质量监测试题含解析_第1页
上海市市北中学2026届高二数学第一学期期末学业质量监测试题含解析_第2页
上海市市北中学2026届高二数学第一学期期末学业质量监测试题含解析_第3页
上海市市北中学2026届高二数学第一学期期末学业质量监测试题含解析_第4页
上海市市北中学2026届高二数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市市北中学2026届高二数学第一学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上的最小值为()A. B.C.-1 D.2.设两个变量与之间具有线性相关关系,相关系数为,回归方程为,那么必有()A.与符号相同 B.与符号相同C.与符号相反 D.与符号相反3.圆:与圆:的位置关系是()A.内切 B.外切C.相交 D.相离4.圆的圆心坐标与半径分别是()A. B.C. D.5.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为()A. B.C.1 D.26.在等差数列中,,则()A.9 B.6C.3 D.17.已知椭圆的长轴长,短轴长,焦距长成等比数列,则椭圆离心率为()A. B.C. D.8.函数的导数记为,则等于()A. B.C. D.9.若数列为等比数列,且,,则()A.8 B.16C.32 D.6410.《莱茵德纸草书》(RhindPapyrus)是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是()个A.12 B.24C.36 D.4811.设双曲线的实轴长与焦距分别为2,4,则双曲线C的渐近线方程为()A. B.C. D.12.阿基米德曾说过:“给我一个支点,我就能撬动地球”.他在做数学研究时,有一个有趣的问题:一个边长为2的正方形内部挖了一个内切圆,现在以该内切圆的圆心且平行于正方形的一边的直线为轴旋转一周形成几何体,则该旋转体的体积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在学习《曲线与方程》的课堂上,老师给出两个曲线方程;,老师问同学们:你想到了什么?能得到哪些结论?下面是四位同学的回答:甲:曲线关于对称;乙:曲线关于原点对称;丙:曲线与坐标轴在第一象限围成的图形面积;丁:曲线与坐标轴在第一象限围成的图形面积;四位同学回答正确的有______(选填“甲、乙、丙、丁”)14.已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_____.15.已知抛物线的焦点F在直线上,过点F的直线l与抛物线C相交于A,B两点,O为坐标原点,△的面积是△面积的4倍,则直线l的方程为____________16.已知直线与圆相切,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,椭圆C:(a>b>0)的左、右焦点分别为,其离心率,且椭圆C经过点.(1)求椭圆C的标准方程;(2)过点M作两条不同的直线与椭圆C分别交于点A,B(均异于点M).若∠AMB的角平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.18.(12分)证明:是无理数.(我们知道任意一个有理数都可以写成形如(m,n互质,)的形式)19.(12分)在平面直角坐标系xOy中,圆O以原点为圆心,且经过点.(1)求圆O的方程;(2)若直线与圆O交于两点A,B,求弦长.20.(12分)已知椭圆的离心率为,右焦点为F,点A(a,0),且|AF|=1(1)求椭圆C的方程;(2)过点F的直线l(不与x轴重合)交椭圆C于点M,N,直线MA,NA分别与直线x=4交于点P,Q,求∠PFQ的大小21.(12分)已知函数(1)当时,求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数a的取值范围22.(10分)已知椭圆的离心率是,且过点.直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的面积的最大值;(Ⅲ)设直线,分别与轴交于点,.判断,大小关系,并加以证明.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求出函数的导函数,根据导数的符号求出函数的单调区间,再根据函数的单调性即可得出答案.【详解】解:因为,所以,当时,,单调递减;当时,,单调递增,故.故选:D.2、A【解析】利用相关系数的性质,分析即得解【详解】相关系数r为正,表示正相关,回归直线方程上升,r为负,表示负相关,回归直线方程下降,与r的符号相同故选:A3、A【解析】先计算两圆心之间的距离,判断距离和半径和、半径差之间的关系即可.【详解】圆圆心,半径,圆圆心,半径,两圆心之间的距离,故两圆内切.故选:A.4、C【解析】将圆的一般方程化为标准方程,即可得答案.【详解】由题可知,圆的标准方程为,所以圆心为,半径为3,故选.5、D【解析】由题意知,抛物线的准线l:y=-1,过A作AA1⊥l于A1,过B作BB1⊥l于B1,设弦AB的中点为M,过M作MM1⊥l于M1.则|MM1|=.|AB|≤|AF|+|BF|(F为抛物线的焦点),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x轴的距离d≥2.6、A【解析】直接由等差中项得到结果.详解】由得.故选:A.7、A【解析】由题意,,结合,求解即可【详解】∵椭圆的长轴长,短轴长,焦距长成等比数列∴∴又∵∴∴,即∴e=又在椭圆e>0∴e=故选:A8、D【解析】求导后代入即可.【详解】,.故选:D.9、B【解析】设等比数列的公比为,根据等比数列的通项公式得到,即可求出,再根据计算可得;【详解】解:设等比数列公比为,因为、,所以,所以;故选:B10、D【解析】设等比数列的首项为,公比,根据题意,由求解.【详解】设等比数列的首项为,公比,由题意得:,即,解得,所以,故选:D11、C【解析】由已知可求出,即可得出渐近线方程.【详解】因为,所以,所以的渐近线方程为.故选:C.12、B【解析】根据题意,结合圆柱和球的体积公式进行求解即可.【详解】由题意可知:该旋转体的体积等于底面半径为,高为的圆柱的体积减去半径为的球的体积,即,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、甲、乙、丙、丁【解析】结合对称性判断甲、乙的正确性;通过对比和与坐标轴在第一象限围成的图形面积来判断丙丁的正确性.【详解】对于甲:交换方程中和的位置得,所以曲线关于对称,甲回答正确.对于乙:和两个点都满足方程,所以曲线关于原点对称,乙回答正确.对于丙:直线与坐标轴在第一象限围成的图形面积为,,,在第一象限,直线与曲线都满足,,,所以在第一象限,直线的图象在曲线的图象上方,所以,丙回答正确.对于丁:圆与坐标轴在第一象限围成的图形面积为,在第一象限,曲线与曲线都满足,,,,所以在第一象限,曲线的图象在曲线的图象下方,所以,丁回答正确.故答案为:甲、乙、丙、丁14、【解析】设点为,由抛物线定义知,,求出点P坐标代入双曲线方程得到的关系式,求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【详解】由题意得F(2,0),因为点P在抛物线y2=8x上,|FP|=5,设点为,由抛物线定义知,,解得,不妨取P(3,2),代入双曲线-=1,得-=1,又因为a2+b2=4,解得a=1,b=,因为双曲线的渐近线方程为,所以双曲线的渐近线为y=±x,由点到直线的距离公式可得,点F到双曲线的渐近线的距离.故答案为:【点睛】本题考查双曲线和抛物线方程及其几何性质;考查运算求解能力和知识迁移能力;灵活运用双曲线和抛物线的性质是求解本题的关键;属于中档题、常考题型.15、【解析】设A,B分别为,由焦点在已知直线上求F坐标及抛物线方程,再根据题设三角形的面积关系可得,并设直线l为,联立抛物线应用韦达定理求参数m,即可知直线l的方程.【详解】设点A,B的坐标分别为,直线,令可得,故焦点F的坐标为,所以,由,,而△的面积是△面积的4倍,所以,即,设直线l为,联立方程,消去x后整理为,所以,代入,有,可得,则直线l的方程为故答案为:.【点睛】关键点点睛:根据抛物线焦点位置及其所在直线求抛物线方程,由面积关系得到交点纵坐标的数量关系,注意交点在x轴两侧,再设直线联立抛物线求参数即可.16、【解析】由直线与圆相切,结合点到直线的距离公式求解即可.【详解】由直线与圆相切,所以圆心到直线l的距离等于半径r,即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)是,证明见解析【解析】(1)根据离心率及椭圆上的点可求解;(2)根据题意分别设出直线MA、MB,与椭圆联立后得到相关点的坐标,再通过斜率公式计算即可证明.【小问1详解】由,得,所以a2=9b2①,又椭圆过点,则②,由①②解得a=6,b=2,所以椭圆的标准方程为【小问2详解】设直线MA的斜率为k,点,因为∠AMB的平分线与y轴平行,所以直线MA与MB的斜率互为相反数,则直线MB的斜率为-k.联立直线MA与椭圆方程,得整理,得,所以,同理可得,所以,又所以为定值.18、详见解析【解析】利用反证法,即可推得矛盾.【详解】假设有理数,则,则,为整数,的尾数只能是0,1,4,5,6,9,的尾数只能是0,1,4,5,6,9,则的尾数是0,2,8,由得,尾数为0,则的尾数是0,而的尾数为0或5,这与为最简分数,的最大公约数是1,相矛盾,所以假设不正确,是无理数.19、(1)(2)【解析】(1)根据两点距离公式即可求半径,进而得圆方程;(2)根据直线与圆的弦长公式即可求解【小问1详解】由,所以圆O的方程为;【小问2详解】由点O到直线的距离为所以弦长20、(1)(2)∠PFQ=90°【解析】(1)由题意得求出a,c,然后求解b,即可得到椭圆方程(2)当直线l的斜率不存在时,验证,即∠PFQ=90°.当直线l的斜率存在时,设l:y=k(x﹣1),其中k≠0.联立得(4k2+3)x2﹣8k2x+4k2﹣12=0.由题意,知Δ>0恒成立,设M(x1,y1),N(x2,y2),利用韦达定理,结合直线MA的方程为.求出、.利用向量的数量积,转化求解即可【小问1详解】由题意得解得a=2,c=1,从而,所以椭圆C的方程为【小问2详解】当直线l的斜率不存在时,有,,P(4,﹣3),Q(4,3),F(1,0),则,,故,即∠PFQ=90°当直线l的斜率存在时,设l:y=k(x﹣1),其中k≠0联立得(4k2+3)x2﹣8k2x+4k2﹣12=0由题意,知Δ>0恒成立,设M(x1,y1),N(x2,y2),则,直线MA的方程为,令x=4,得,即,同理可得所以,因为0,所以∠PFQ=90°综上,∠PFQ=90°21、(1)(2)【解析】(1)先求导,由到数值求出斜率,最后根据点斜式求出方程即可;(2)采用分离常数法,转化为求新函数的值域即可.【小问1详解】时,,,则,,所以在点处的切线方程为,即【小问2详解】对任意的,恒成立,即,对任意的,令,即,则,因为,,所以当时,,在区间上单调递减,当时,,在区间上单调递增,则,所以22、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论