北京八中怡海分校2026届高一上数学期末教学质量检测模拟试题含解析_第1页
北京八中怡海分校2026届高一上数学期末教学质量检测模拟试题含解析_第2页
北京八中怡海分校2026届高一上数学期末教学质量检测模拟试题含解析_第3页
北京八中怡海分校2026届高一上数学期末教学质量检测模拟试题含解析_第4页
北京八中怡海分校2026届高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京八中怡海分校2026届高一上数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若集合,则A. B.C. D.2.已知,则()A. B.C. D.3.下列说法正确的是()A.若,,则 B.若a,,则C.若,,则 D.若,则4.设平面向量满足,且,则的最大值为A.2 B.3C. D.5.已知函数,且,则满足条件的的值得个数是A.1 B.2C.3 D.46.已知函数,则等于A.2 B.4C.1 D.7.已知一扇形的周长为28,则该扇形面积的最大值为()A.36 B.42C.49 D.568.在平行四边形中,,,为边的中点,,则()A.1 B.2C.3 D.49.设函数,则下列结论错误的是()A.的一个周期为B.的图像关于直线对称C.的图像关于点对称D.在有3个零点10.已知光线每通过一块特制玻璃板,强度要减弱,要使通过玻璃板光线强度减弱到原来的以下,则至少需要重叠玻璃版块数为(参考数据:)()A.4 B.5C.6 D.7二、填空题:本大题共6小题,每小题5分,共30分。11.过点且与直线垂直的直线方程为___________.12.“”是“”的______条件(请从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选择一个填)13.已知函数,对于任意都有,则的值为______________.14.已知命题:,都有是真命题,则实数取值范围是______15.函数f(x)=log2(x2-1)的单调递减区间为________16.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮船航行模式之先导,如图,某桨轮船的轮子的半径为,他以的角速度逆时针旋转,轮子外边沿有一点P,点P到船底的距离是H(单位:m),轮子旋转时间为t(单位:s).当时,点P在轮子的最高处.(1)当点P第一次入水时,__________;(2)当时,___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若,且,求的值.(2)若,求的值.18.有一批材料,可以建成长为240米的围墙.如图,如果用材料在一面靠墙的地方围成一块矩形的场地,中间用同样材料隔成三个相等面积的矩形,怎样围法才可取得最大的面积?并求此面积.19.在①是函数图象的一条对称轴,②函数的最大值为2,③函数图象与y轴交点的纵坐标是1这三个条件中选取两个补充在下面题目中,并解答已知函数,______(1)求的解析式;(2)求在上的值域20.如图,已知三棱锥中,,,为的中点,为的中点,且为正三角形.(1)求证:平面;(2)求证:平面;(3)若,,求三棱锥的体积.21.已知函数,.(1)求函数的最小正周期和单调递减区间;(2)用括号中的正确条件填空.函数的图象可以用下面的方法得到:先将正弦曲线,向___________(左,右)平移___________(,)个单位长度;在纵坐标不变的条件下再把所得曲线上各点的横坐标变为原来的___________(,2)倍,再在横坐标不变的条件下把所得曲线上各点的纵坐标变为原来的___________(,2)倍,最后再把所得曲线向___________(上,下)平移___________(1,2)个单位长度.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】详解】集合,所以.故选D.2、C【解析】先对两边平方,构造齐次式进而求出或,再用正切的二倍角公式即可求解.【详解】解:对两边平方得,进一步整理可得,解得或,于是故选:C【点睛】本题考查同角三角函数关系和正切的二倍角公式,考查运算能力,是中档题.3、C【解析】结合特殊值、差比较法确定正确选项.【详解】A:令,;,,则,,不满足,故A错误;B:a,b异号时,不等式不成立,故B错误;C:,,,,即,故C正确;D:令,,不成立,故D错误.故选:C4、C【解析】设,∵,且,∴∵,当且仅当与共线同向时等号成立,∴的最大值为.选C点睛:由于向量,且,因此向量确定,这是解题的基础也是关键.然后在此基础上根据向量模的三角不等式可得的范围,解题时要注意等号成立的条件5、D【解析】令则即当时,当时,则令,,由图得共有个点故选6、A【解析】由题设有,所以,选A7、C【解析】由题意,根据扇形面积公式及二次函数的知识即可求解.【详解】解:设扇形的半径为R,弧长为l,由题意得,则扇形的面积,所以该扇形面积的最大值为49,故选:C.8、D【解析】以为坐标原点,建立平面直角坐标系,设,再利用平面向量的坐标运算求解即可【详解】以坐标原点,建立平面直角坐标系,设,则,,,,故,由可得,即,化简得,故,故,,故故选:D9、D【解析】利用辅助角公式化简,再根据三角函数的性质逐个判断即可【详解】,对A,最小周期为,故也为周期,故A正确;对B,当时,为的对称轴,故B正确;对C,当时,,又为的对称点,故C正确;对D,则,解得,故在内有共四个零点,故D错误故选:D10、D【解析】设至少需要经过这样的块玻璃板,则,即,两边同时取以10为底的对数,可得,进而求解即可,需注意【详解】设至少需要经过这样的块玻璃板,则,即,所以,即,因为,所以,故选:D【点睛】本题考查利用对数的运算性质求解,考查指数函数的实际应用二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用垂直关系设出直线方程,待定系数法求出,从而求出答案.【详解】设与直线垂直的直线为,将代入方程,,解得:,则与直线垂直的直线为.故答案为:12、必要不充分【解析】根据充分条件、必要条件的定义结合余弦函数的性质可得答案.【详解】当时,可得由,不能得到例如:取时,,也满足所以由,可得成立,反之不成立“”是“”的必要不充分条件故答案为:必要不充分13、【解析】由条件得到函数的对称性,从而得到结果【详解】∵f=f,∴x=是函数f(x)=2sin(ωx+φ)的一条对称轴.∴f=±2.【点睛】本题考查了正弦型三角函数的对称性,注意对称轴必过最高点或最低点,属于基础题.14、【解析】由于,都有,所以,从而可求出实数的取值范围【详解】解:因为命题:,都有是真命题,所以,即,解得,所以实数的取值范围为,故答案为:15、【解析】由复合函数同增异减得单调减区间为的单调减区间,且,解得故函数的单调递减区间为16、①.②.##【解析】算出点从最高点到第一次入水的圆心角,即可求出对应时间;由题意求出关于的表达式,代值运算即可求出对应.【详解】如图所示,当第一次入水时到达点,由几何关系知,又圆的半径为3,故,此时轮子旋转的圆心角为:,故;由题可知,即,当时,.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)诱导公式化简可得,结合,求解即可;(2)代入,结合诱导公式化简可得,即,利用二倍角公式化简可得,代入即得解【小问1详解】由题意,若,则或【小问2详解】若,则即,即故18、当面积相等的小矩形的长为时,矩形面积最大,【解析】设每个小矩形的长为,宽为,依题意可知,代入矩形的面积公式,根据基本不等式即可求得矩形面积的最大值.【详解】设每个小矩形的长为,宽为,依题意可知,,当且仅当取等号,所以时,.【点睛】本题主要考查函数最值的应用,考查了学生分析问题和解决问题的能力.19、(1)条件选择见解析,;(2).【解析】(1)选择①②直接求出A及的解;选择①③,先求出,再由求A作答;选择②③,直接可得A,再由求作答.(2)由(1)结合正弦函数的性质即可求得在上的值域.【小问1详解】选择①②,,由及得:,所以的解析式是:.选择①③,由及得:,即,而,则,即,解得,所以的解析式是:.选择②③,,而,即,又,则有,所以的解析式是:.【小问2详解】由(1)知,,当时,,则当,即时,,当,即时,,所以函数在上的值域是.20、(1)见详解;(2)见详解;(3).【解析】(1)先证,可证平面.(2)先证,得,结合可证得平面.(3)等积转换,由,可求得体积.【详解】(1)证明:因为为的中点,为的中点,所以是的中位线,.又,,所以.(2)证明:因为为正三角形,为的中点,所以.又,所以.又因为,,所以.因为,所以.又因为,,所以.(3)因为,,所以,即是三棱锥的高.因为,为的中点,为正三角形,所以.由,可得,在直角三角形中,由,可得.于是.所以.【点睛】本题考查空间线面平行与垂直的证明,体积的计算.空间中的平行与垂直的证明过程就是利用相关定义、判定定理和性质定理实现线线平行(垂直)、线面平行(垂直)、面面平行(垂直)的转换.求三棱锥的体积常采用等积转换的方法,选择易求的底面积和高来求体积.21、(1),(2)左,,,2,上,1【解析】(1)根据降幂公式、二倍角的正弦公式及两角和的正弦公式化简,由正弦型三角函数的周期公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论