版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届吉林省长春汽车经济开发区第六中学高二上数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列关于函数及其图象的说法正确的是()A.B.最小正周期为C.函数图象的对称中心为点D.函数图象的对称轴方程为2.考试停课复习期间,小王同学计划将一天中的7节课全部用来复习4门不同的考试科目,每门科目复习1或2节课,则不同的复习安排方法有()种A.360 B.630C.2520 D.151203.已知焦点在轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B.C.2 D.4.设实系数一元二次方程在复数集C内的根为、,则由,可得.类比上述方法:设实系数一元三次方程在复数集C内的根为,则的值为A.﹣2 B.0C.2 D.45.如图,我市某地一拱桥垂直轴截面是抛物线,已知水利人员在某个时刻测得水面宽,则此时刻拱桥的最高点到水面的距离为()A. B.C. D.6.若复数满足,则复平面内表示的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限7.经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A. B.C. D.8.盘子里有肉馅、素馅和豆沙馅的包子共个,从中随机取出个,若是肉馅包子的概率为,不是豆沙馅包子的概率为,则素馅包子的个数为()A. B.C. D.9.下列说法正确的是()A.“若,则,全为0”的否命题为“若,则,全不为0”B.“若方程有实根,则”的逆命题是假命题C.命题“,”的否定是“,”D.“”是“直线与直线平行”的充要条件10.已知双曲线的渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.411.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(-x)≠f(x)B.∀x∈R,f(-x)≠-f(x)C∃x0∈R,f(-x0)≠f(x0)D.∃x0∈R,f(-x0)≠-f(x0)12.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有()种A.54 B.72C.96 D.120二、填空题:本题共4小题,每小题5分,共20分。13.高二某位同学参加物理、政治科目的学考,已知这位同学在物理、政治科目考试中得A的概率分别为、,这两门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为______14.等差数列的前项和为,已知,则__.15.已知函数,则________16.方程的曲线的一条对称轴是_______,的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列前n项和为,,,若对任意的正整数n成立,求实数的取值范围.18.(12分)已知椭圆的左、右焦点分别为,离心率为,圆:过椭圆的三个顶点,过点的直线(斜率存在且不为0)与椭圆交于两点(1)求椭圆的标准方程(2)证明:在轴上存在定点,使得为定值,并求出定点的坐标19.(12分)如图,在三棱柱中,点在底面内的射影恰好是点,是的中点,且满足(1)求证:平面;(2)已知,直线与底面所成角的大小为,求二面角的大小20.(12分)已知动圆过定点,且与直线相切.(1)求动圆圆心的轨迹的方程;(2)直线过点与曲线相交于两点,问:在轴上是否存在定点,使?若存在,求点坐标,若不存在,请说明理由.21.(12分)已知直线l的斜率为-2,且与两坐标轴的正半轴围成三角形的面积等于1.圆C的圆心在第四象限,直线l经过圆心,圆C被x轴截得的弦长为4.若直线x-2y-1=0与圆C相切,求圆C的方程22.(10分)已知椭圆的上顶点在直线上,点在椭圆上.(1)求椭圆C的方程;(2)点P,Q在椭圆C上,且,,点G为垂足,是否存在定圆恒经过A,G两点,若存在,求出圆的方程;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】化简,利用正弦型函数的性质,依次判断,即可【详解】∵∴,A选项错误;的最小正周期为,B选项错误;令,则,故函数图象的对称中心为点,C选项错误;令,则,所以函数图象的对称轴方程为,D选项正确故选:D2、C【解析】,先安排复习节的科目,然后安排其余科目,由此计算出不同的复习安排方法数.【详解】第步,门科目选门,安排节课,方法数有种,第步,安排其余科目,每门科目节课,方法数有种,所以不同的复习安排方法有种.故选:C3、D【解析】由题意,化简即可得出双曲线的离心率【详解】解:由题意,.故选:D4、A【解析】用类比推理得到,再用待定系数法得到,,再根据求解.【详解】,由对应系数相等得:,.故选:A.【点睛】本题主要考查合情推理以及待定系数法,还考查了转化化归的思想和逻辑推理的能力,属于中档题.5、D【解析】代入计算即可.【详解】设B点的坐标为,由抛物线方程得,则此时刻拱桥的最高点到水面的距离为2米.故选:D6、A【解析】根据复数的运算法则,求得,结合复数的几何意义,即可求解.【详解】由题意,复数满足,可得,所以复数在复平面内对应的点的坐标为,位于第一象限.故选:A.7、A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题8、C【解析】计算出肉馅包子和豆沙馅包子的个数,即可求得素馅包子的个数.【详解】由题意可知,肉馅包子的个数为,从中随机取出个,不是豆沙馅包子的概率为,则该包子是豆沙馅包子的概率为,所以,豆沙馅包子的个数为,因此,素馅包子的个数为.故选:C.9、D【解析】A选项,全为0的否定是不全为0;B选项,先写出逆命题,再判断出真假;C选项,命题“,”的否定是“,”,D选项,根据直线平行,列出方程和不等式,求出,进而判断出充要条件.【详解】“若,则,全为0”的否命题为“若,则,不全为0”,A错误;若方程有实根,则的逆命题是若,则方程有实根,由得:,其中,所以若,则方程有实根是真命题,故B错误;命题“,”的否定是“,”,C错误;直线与直线平行,需要满足且,解得:,所以“”是“直线与直线平行”的充要条件,D正确;故选:D10、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.11、C【解析】利用偶函数的定义和全称命题的否定分析判断解答.【详解】∵定义域为R的函数f(x)不是偶函数,∴∀x∈R,f(-x)=f(x)为假命题,∴∃x0∈R,f(-x0)≠f(x0)为真命题.故选C【点睛】本题主要考查偶函数的定义和全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.12、A【解析】根据题意,分2种情况讨论:①、甲是最后一名,则乙可以为第二、三、四名,剩下的三人安排在其他三个名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案【详解】根据题意,甲乙都没有得到冠军,而乙不是最后一名,分2种情况讨论:①甲是最后一名,则乙可以为第二、三、四名,即乙有3种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;②甲不是最后一名,甲乙需要排在第二、三、四名,有种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;则一共有种不同的名次情况,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件利用相互独立事件、对立事件的概率公式计算作答.【详解】依题意,这位考生至少得1个A对立事件为物理、政治科目考试都没有得A,其概率为,所以这位考生至少得1个A的概率为.故答案为:14、【解析】根据等差数列的求和公式和等差数列的性质即可求出.【详解】因为等差数列的前项和为,,则,故答案为:33.【点睛】本题考查了等差数列的求和公式和等差数列的性质,属于基础题.15、.【解析】将代入计算,利用和互为相反数,作差可得,计算可得结果.【详解】解:函数则.,,作差可得:,即,解得:代入此时成立.故答案为:.16、①.x轴或直线②.【解析】根据给定条件分析方程的性质即可求得对称轴及x的取值范围作答.【详解】方程中,因,则曲线关于x轴对称,又,解得,此时曲线与都关于直线对称,曲线的对称轴是x轴或直线,的取值范围是.故答案为:x轴或直线;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】设等差数列的公差为,根据题意得,解方程得,,进而得,故恒成立,再结合二次函数的性质得当或4时,取得最小值,进而得答案.【详解】解:设等差数列的公差为,由已知,.联立方程组,解得,.所以,,由题意,即.令,其图象为开口向上的抛物线,对称轴为,所以当或4时,取得最小值,所以实数的取值范围是.18、(1);(2)见解析,定点【解析】(1)先判断圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即.再由求即可.(2)设在轴上存在定点,使得为定值,根据题意,设直线的方程为,联立可得,再运算将韦达定理代入化简有与k无关即可.【详解】(1)由圆方程中的时,的两根不为相反数,故可设圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即有又,解得∴椭圆的标准方程为(2)证明:设在轴上存在定点,使得为定值,由(1)可得,设直线的方程为,联立可得,设,则,,要使为定值,只需,解得∴在轴上存在定点,使得为定值,定点的坐标为【点睛】本题主要考查椭圆的几何性质和直线与椭圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.19、(1)证明见解析;(2).【解析】(1)分别证明出和,利用线面垂直的判定定理即可证明;(2)以C为原点,为x、y、z轴正方向建立空间直角坐标系,用向量法求二面角的平面角.【小问1详解】因为点在底面内的射影恰好是点,所以面.因为面,所以.因为是的中点,且满足.所以,所以.因为,所以,即,所以.因为,面,面,所以平面.【小问2详解】∵面,∴直线与底面所成角为,即.因为,所以由(1)知,,因,所以,.如图示,以C为原点,为x、y、z轴正方向建立空间直角坐标系.则,,,,所以,设,由得,,即.则.设平面BDC1的一个法向量为,则,不妨令,则.因为面,所以面的一个法向量为记二面角的平面角为,由图知,为锐角.所以,即.所以二面角的大小为.20、(1);(2)存在,.【解析】(1)利用两点间的距离公式和直线与圆相切的性质即可得出;(2)假设存在点,满足题设条件,设直线的方程,根据韦达定理即可求出点的坐标【小问1详解】设动圆的圆心,依题意:化简得:,即为动圆的圆心的轨迹的方程【小问2详解】假设存在点,满足条件,使①,显然直线斜率不为0,所以由直线过点,可设,由得设,,,,则,由①式得,,即消去,,得,即,,,存在点使得21、【解析】先根据题意设直线方程,由条件求出直线的方程,再根据条件列出等量关系,求出圆心和半径,进而求得答案.【详解】解:设直线l的方程为y=-2x+b(b>0),它与两坐标轴的正半轴的交点依次为,,因为直线l与两坐标轴的正半轴所围成的三角形的面积等于1,所以,解得b=2,所以直线l的方程是,即由题意,可设圆C的圆心为,半径为r,又因为圆C被x轴截得的弦长等于4,所以①,由于直线与圆相切,所以圆心C到直线的距离②,所以①②联立得:,解得:或,又圆心在第四象限,所以,则圆心,,所以圆C方程是.22、(1);(2)存在,定圆.【解析】(1)由题可得,,即求;(2)由题可设直线的方程,利用韦达定理及条件可得直线恒过定点,则以为直径的圆适合题意,即得.【小问1详解】由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年扬州市妇幼保健院公开招聘高层次及紧缺专业人才8人备考题库及答案详解参考
- 2025年宋庆龄幼儿园工作人员公开招聘备考题库及1套完整答案详解
- 2025年郑州市航空港区和昌云著鸿运湾幼儿园招聘15人备考题库及完整答案详解1套
- 2025年甘肃省城乡发展投资集团有限公司招聘备考题库及1套参考答案详解
- 2025年非遗皮影五年人才培养报告
- 2025年重庆市九龙坡区华美小学教师招聘备考题库有答案详解
- 智能社区邻里关系与平台建设的2025年可行性研究
- 2025年江北新区教育局所属事业单位公开招聘教师备考题库及一套完整答案详解
- 2025年武汉情智学校招聘备考题库有答案详解
- 2025年封丘县建勋学校招聘备考题库完整答案详解
- 2026富滇银行公司招聘面试题及答案
- 2025年南京铁道职业技术学院单招职业倾向性测试题库附答案
- 2025年网络维护管理人员工作总结例文(2篇)
- 城银清算服务有限责任公司2026年校园招聘16人备考题库附答案
- 大学数学建模竞赛(2025)获奖论文范例
- 2025年河南豫能控股股份有限公司及所管企业第二批社会招聘18人笔试历年参考题库附带答案详解
- 2025年《项目管理认证考试》知识考试题库及答案解析
- 安徽消防笔试题及答案
- 书籍借阅营销方案
- 生态冷鲜牛肉销售创业策划书范文
- 2025年高级煤矿综采安装拆除作业人员《理论知识》考试真题(含解析)
评论
0/150
提交评论