中考数学模拟试卷分类汇编一元一次不等式易错压轴解答题(及答案)_第1页
中考数学模拟试卷分类汇编一元一次不等式易错压轴解答题(及答案)_第2页
中考数学模拟试卷分类汇编一元一次不等式易错压轴解答题(及答案)_第3页
中考数学模拟试卷分类汇编一元一次不等式易错压轴解答题(及答案)_第4页
中考数学模拟试卷分类汇编一元一次不等式易错压轴解答题(及答案)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学模拟试卷分类汇编一元一次不等式易错压轴解答题(及答案)一、一元一次不等式易错压轴解答题1.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?2.自治区发展和改革委员会在2019年11月印发《广西壮族自治区新能源汽车推广应用攻坚行动方案》,力争到2020年底,全区新能源汽车保有量比攻坚行动前增长100%,达到14.6万辆以上.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和1辆B型车,销售额为62万元;本周已售出3辆A型车和2辆B型车,销售额为106万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车至少购买1辆,购车费不少于130万元,则有哪几种购车方案?3.某服装店用2400元购进一批运动服,很快售完;老板又用3750元购进第二批运动服,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批运动服每件进价是多少元?(2)服装店按标价的8折进行销售,要使得两次的销售总利润不少于1850元,每件运动服标价至少为多少元?(利润=售价-进价).4.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(1)求A、B两种型号的电风扇的销售单价;(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.5.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:;等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:若,,则;若,,则;若,,则;若,,则.(1)反之:若,则或;若,则________或________.(2)根据上述规律,求不等式的解集.(3)直接写出分式不等式的解集________.6.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)7.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格AB进价元件12001000售价元件13501200(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?8.为响应党中央“下好一盘棋,共护一江水”的号召,某治污公司决定购买甲、乙两种型号的污水处理设备共10台.经调查发现:购买一台甲型设备比购买一台乙型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元,且一台甲型设备每月可处理污水240吨,一台乙型设备每月可处理污水200吨.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少万元?(2)若治污公司购买污水处理设备的资金不超过109万元,月处理污水量不低于2080吨.①求该治污公司有几种购买方案;②如果为了节约资金,请为该公司设计一种最省钱的购买方案.9.某风景区票价如下表所示:人数/人1~4041~8080以上价格/元/人150130120有甲、乙两个旅行团队共计100人,计划到该景点游玩.已知乙队多于甲队人数的,但不超过甲队人数的,且甲、乙两队分别购票共需13600元(1)试通过计算判断,甲、乙两队购票的单价分别是多少?(2)求甲、乙两队分别有多少人?(3)暑期将至,该风景区计划对门票价格做如下调整:人数不超过40人时,门票价格不变;人数超过40人但不超过80人时,每张门票降价a元;人数超过80人时,每张门票降价2a元,其中a>0.若甲、乙两队联合购票比分别购票最多可节约2250元,直接写出a的取值范围10.定义:对于实数a,符号表示不大于a的最大整数,例如:.(1)如果,求a的取值范围;(2)如果,求满足条件的所有整数x.11.如图,长青农产品加工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批原料甲运回工厂,经过加工后制成产品乙运到B地,其中原料甲和产品乙的重量都是正整数.已知铁路运价为2元/(吨·千米),公路运价为8元/(吨·千米).(1)若由A到B的两次运输中,原料甲比产品乙多9吨,工厂计划支出铁路运费超过5700元,公路运费不超过9680元.问购买原料甲有哪几种方案,分别是多少吨?(2)由于国家出台惠农政策,对运输农产品的车辆免收高速通行费,并给予一定的财政补贴,综合惠农政策后公路运输价格下降m(0<m<4且m为整数)元,若由A到B的两次运输中,铁路运费为5760元,公路运费为5100元,求m的值.12.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)600450已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.【参考答案】***试卷处理标记,请不要删除一、一元一次不等式易错压轴解答题1.(1)解:设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,依题意,得:{2x-y=6x+2y=48,解得:{x=12y=18.答:改造1个甲种型号大棚需要12万元解析:(1)解:设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,依题意,得:,解得:.答:改造1个甲种型号大棚需要12万元,改造1个乙种型号大棚需要18万元.(2)解:设改造m个甲种型号大棚,则改造(8﹣m)个乙种型号大棚,依题意,得:,解得:≤m≤.∵m为整数,∴m=3,4,5,∴共有3种改造方案,方案1:改造3个甲种型号大棚,5个乙种型号大棚;方案2:改造4个甲种型号大棚,4个乙种型号大棚;方案3:改造5个甲种型号大棚,3个乙种型号大棚.方案1所需费用12×3+18×5=126(万元);方案2所需费用12×4+18×4=120(万元);方案3所需费用12×5+18×3=114(万元).∵114<120<126,∴方案3改造5个甲种型号大棚,3个乙种型号大棚基地投入资金最少,最少资金是114万元.【解析】【分析】(1)设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,根据“改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设改造m个甲种型号大棚,则改造(8﹣m)个乙种型号大棚,根据改造时间不超过35天且改造费用不超过128万元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出各改造方案,再利用总价=单价×数量分别求出三种方案所需改造费用,比较后即可得出结论.2.(1)解:设每辆A型车和B型车的售价分别是x万元、y万元,则{2x+y=623x+2y=106,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元(2)解:设购买解析:(1)解:设每辆A型车和B型车的售价分别是x万元、y万元,则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元(2)解:设购买A型车a(a≥1)辆,则购买B型车(6-a)辆,则依题意得18a+26(6-a)≥130,解得:a≤3,∴1≤a≤3.∵a是正整数,∴a=1或2或a=3.共有三种方案:方案一:购买1辆A型车和5辆B型车;方案二:购买2辆A型车和4辆B型车;方案三:购买3辆A型车和3辆B型车.【解析】【分析】(1)设每辆A型车的售价为x万元,每辆B型车的售价为y万元,根据“上周售出2辆A型车和1辆B型车,销售额为62万元;本周已售出3辆A型车和2辆B型车,销售额为106万元.”列方程组,解之即可得出结论;(2)设购买A型车a(a≥1)辆,则购买B型车(6-a)辆,则依“购车费不少于130万元”可列不等式解之即可得出a的取值范围,再结合a为整数,即可得出购车方案的个数.3.(1)解:设第一批运动服每件进价x元,则第二批运动服每件进价(+5)元,依题意得:.解得:x=120检验:x=120时,2x(x+5)≠0.x=120是原方程的根,且符合题意

答解析:(1)解:设第一批运动服每件进价x元,则第二批运动服每件进价(+5)元,依题意得:.解得:x=120检验:x=120时,2x(x+5)≠0.x=120是原方程的根,且符合题意

答:第一批运动服每件进价是120元.(2)解:设每件运动服标价为y元,依题意得:≥1850.解得y≥200.答:每件运动服标价至少为200元.【解析】【分析】(1)此题的等量关系为:第二批的进价=第一批的进价+5;2400÷第一批的进价×=3750÷第二批运动服每件进价,设未知数,列方程求出方程的解即可。(2)不等关系为:两次的销售总利润≥1850,据此列出不等式,再求出不等式的最小整数解即可。4.(1)解:设A、B两种型号的电风扇单价分别为x元和y元,根据题意得,{3x+4y=12005x+6y=1900,解这个方程组得,{x=200y=150,答:A解析:(1)解:设、两种型号的电风扇单价分别为元和元,根据题意得,,解这个方程组得,,答:、两种型号的电风扇的销售单价分别为元和元(2)解:设种型号的电风扇应采购台,根据题意得,,解得,,∵为正整数,∴,答:种型号的电风扇最多能采购台(3)解:根据题意得,,解得:,结合(2)有,∵为正整数,∴,,∴采购方案是:方案一:采购型号台,型号台;方案二:采购型号台,型号台.【解析】【分析】(1)设、两种型号的电风扇单价分别为元和元,根据、两种型号第一周与第二周的销售收入列出二元一次方程组进行求解;(2)设种型号的电风扇应采购台,根据这两种型号的电风扇的采购金额不多于元列出一元一次不等式进行求解;(3)根据总利润=(A台售价-进价)×采购数量+(B台售价-进价)×采购数量列出不等式,结合(2)与为正整数进行求解.5.(1){a>0b<0;{a<0b>0(2)解:∵不等式大于0,∴分子分母同号,故有:{x-2>0x+1>0或{x-2<0x+1<0解不等式组得到:x>2或.故答案为:x解析:(1);(2)解:∵不等式大于0,∴分子分母同号,故有:或解不等式组得到:或.故答案为:或.(3)或【解析】【解答】解:(1)若,则分子分母异号,故或故答案为:或;(3)由题意知,不等式的分子为是个正数,故比较两个分母大小即可.情况①:时,即时,,解得:.情况②:时,即时,,解得:.情况③:时,此时无解.故答案为:或.【分析】(1)根据有理数的运算法则,两数相除,同号得正,异号得负即可解答;(2)根据不等式大于0得到分子分母同号,再分类讨论即可;(3)观察不等式后,发现分子相同且为正数,故只需要比较分母,再对分母的正负性进行分类讨论即可.6.(1)解:设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得:{7x+2y=805x+6y=80解得:{x=10y=5答:购进A种纪念品每件需10元、B种纪念品每件需5解析:(1)解:设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得:解得:答:购进A种纪念品每件需10元、B种纪念品每件需5元;(2)解:设购进A种纪念品t件,则购进B种纪念品(100﹣t)件,由题意得:750≤5t+500≤764解得∵t为正整数∴t=50,51,52∴有三种方案.第一种方案:购进A种纪念品50件,B种纪念品50件;第二种方案:购进A种纪念品51件,B种纪念品50件;第三种方案:购进A种纪念品52件,B种纪念品48件;(3)解:第一种方案商家可获利:w=50a+50(5﹣a)=250(元);第二种方案商家可获利:w=51a+49(5﹣a)=245+2a(元);第三种方案商家可获利:w=52a+48(5﹣a)=240+4a(元).当a=2.5时,三种方案获利相同;当0≤a<2.5时,方案一获利最多;当2.5<a≤5时,方案三获利最多.【解析】【分析】(1)设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得关于x和y的二元一次方程组,解得x和y的值即可;(2)设购进A种纪念品t件,则购进B种纪念品(100﹣t)件,由题意得关于t的不等式,解得t的范围,再由t为正整数,可得t的值,从而方案数可得;(3)分别写出三种方案关于a的利润函数,根据一次函数的性质可得答案.7.(1)解:设第1次购进A商品x件,B商品y件.根据题意得:,解得:{x=200y=150.答:商场第1次购进A商品200件,B商品150件.(2)解:设B商品打m折出售.解析:(1)解:设第1次购进A商品x件,B商品y件.根据题意得:,解得:.答:商场第1次购进A商品200件,B商品150件.(2)解:设B商品打m折出售.根据题意得:200×(1350﹣1200)+150×2×(1200×﹣1000)=54000,解得:m=9.答:B种商品打九折销售的.【解析】【分析】(1)设第1次购进A商品x件,B商品y件,根据该商场第1次用39万元购进A、B两种商品且销售完后获得利润6万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设B商品打m折出售,根据总利润=单件利润×销售数量,即可得出关于m的一元一次方程,解之即可得出结论.8.(1)解:设每台甲型设备和每台B型设备各需要x万元、y万元,由题意得:{x-y=23y-2x=6,解得:{x=12y=10答:每台甲型设备和每台乙型设备各需要12万元、10万元;解析:(1)解:设每台甲型设备和每台B型设备各需要x万元、y万元,由题意得:,解得:答:每台甲型设备和每台乙型设备各需要12万元、10万元;(2)解:①设应购置甲型号的污水处理设备m台,则购置乙型号的污水处理设备台,由题意得:,解得:,∴,3,4,共3种方案;②设总购价万元,由题意得:,当时,,当时,,当时,,∴当,即购买甲2台,乙8台,总购价104万元,最省钱.【解析】【分析】(1)设每台甲型设备和每台乙型设备各需要万元、万元,由题意得:买一台甲型设备的价钱-买一台乙型设备的价钱=2万元;购买3台乙型设备-购买2台甲型设备比=6万元.根据等量关系列出方程组,解方程组即可;(2)①设应购置甲型号的污水处理设备台,则购置乙型号的污水处理设备台,由于要求资金不能超过109万元,即购买资金万元;再根据“每台甲型设备每月处理污水240吨,每台乙型设备每月处理污水200吨,每月处理的污水不低于2040吨”可得不等关系:吨;把两个不等式组成不等式组,由此求出关于甲型号处理机购买的几种方案;②设总购价,根据(2)①的结论,分类讨论,选择符合题意得那个方案即可.9.(1)解:设甲队人数为x人,则乙队人数为(100-x)人,根据题意得,

,解得,.∴乙队人数不超过40人,∴甲队购票的单价为130元/人,乙队购票的单价为150元/人.(2)解解析:(1)解:设甲队人数为x人,则乙队人数为(100-x)人,根据题意得,

,解得,.∴乙队人数不超过40人,∴甲队购票的单价为130元/人,乙队购票的单价为150元/人.(2)解:根据题意得,130x+150(100-x)=13600,解得,x=70,∴100-x=30人.答:甲、乙两队分别有70人和30人.(3)解:根据题意得,解得a≤5,∴0<a≤5.a的取值范围是:0<a≤5.【解析】【分析】(1)由题意可得两个不等关系“乙队甲队人数

,乙队甲队人数”,根据这两个不等关系列不等式组即可求解;(2)由题意可得相等关系“甲队人数单价+乙队人数单价=13600”,列方程求解;(3)由题意可得不等关系“甲队人数单价+乙队人数单价-两队联合购票的费用2250”,列不等式即可求解.10.(1)解:∵[a]=-2,∴a的取值范围是:-2≤a<-1;故答案为:.(2)解:由题意得:解得,∴所有整数x的值为5,6.【解析】【分析】(1)根据新定解析:(1)解:∵[a]=-2,∴a的取值范围是:-2≤a<-1;故答案为:.(2)解:由题意得:解得,∴所有整数的值为5,6.【解析】【分析】(1)根据新定义运算法则“符号表示不大于a的最大整数”求出a的解即可;(2)根据新定义运算法则“符号表示不大于a的最大整数”列出关于x的不等式组,求出x的取值范围,从而得出满足条件的所有正整数的解.11.(1)解:设运送乙产品x吨,则运送甲产品(x+9)吨,,解得,11.8<x≤1457∵x为整数,∴x=12,13,14,∴x+9为21,22,23,∴购买原料甲有三种方案,分解析:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论