云南省楚雄市古城二中2026届高二上数学期末考试模拟试题含解析_第1页
云南省楚雄市古城二中2026届高二上数学期末考试模拟试题含解析_第2页
云南省楚雄市古城二中2026届高二上数学期末考试模拟试题含解析_第3页
云南省楚雄市古城二中2026届高二上数学期末考试模拟试题含解析_第4页
云南省楚雄市古城二中2026届高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省楚雄市古城二中2026届高二上数学期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.据有关文献记载:我国古代一座层塔共挂了盏灯,且相邻两层中的下一层灯数比上一层灯数都多为常数盏,底层的灯数是顶层的倍,则塔的底层共有灯()A.盏 B.盏C.盏 D.盏2.椭圆:的左焦点为,椭圆上的点与关于坐标原点对称,则的值是()A.3 B.4C.6 D.83.如图①所示,将一边长为1的正方形沿对角线折起,形成三棱锥,其主视图与俯视图如图②所示,则左视图的面积为()A. B.C. D.4.已知点的坐标为(5,2),F为抛物线的焦点,若点在抛物线上移动,当取得最小值时,则点的坐标是A.(1,) B.C. D.5.已知双曲线的左焦点为F,O为坐标原点,M,N两点分别在C的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A. B.C. D.6.直线与圆相交于点,点是坐标原点,若是正三角形,则实数的值为A.1 B.-1C. D.7.设双曲线与幂函数的图象相交于,且过双曲线的左焦点的直线与函数的图象相切于,则双曲线的离心率为()A. B.C. D.8.实数m变化时,方程表示的曲线不可以是()A.直线 B.圆C椭圆 D.双曲线9.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.510.“”是“曲线为焦点在轴上的椭圆”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.已知函数为偶函数,且当时,,则不等式的解集为()A. B.C. D.12.在空间直角坐标系中,方程所表示的图形是()A圆 B.椭圆C.双曲线 D.球二、填空题:本题共4小题,每小题5分,共20分。13.在平面上给定相异两点A,B,点P满足,则当且时,P点的轨迹是一个圆,我们称这个圆为阿波罗尼斯圆.已知椭圆的离心率,A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点P满足,若的面积的最大值为3,则面积的最小值为___________.14.如图所示,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,△AEB是等腰直角三角形,其中,则点D到平面ACE的距离为________15.已知点,是椭圆内的两个点,M是椭圆上的动点,则的最大值为______16.已知方程,若此方程表示椭圆,则实数的取值范围是________;若此方程表示双曲线,则实数的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前三项依次为,4,,前项和为,且.(1)求的通项公式及的值;(2)设数列的通项,求证是等比数列,并求的前项和.18.(12分)年月日,中国选手杨倩在东京奥运会女子米气步枪决赛由本得冠军,为中国代表团揽入本届奥运会第一枚金牌.受奥运精神的鼓舞,某射击俱乐部组织名射击爱好者进行一系列的测试,并记录他们的射击得分(单位:分),将所得数据整理得到如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计该名射击爱好者的射击平均得分(求平均值时同一组数据用该组区间的中点值作代表);(2)若采用分层抽样的方法,从得分高于分的射击爱好者中随机抽取人调查射击技能情况,再从这人中随机选取人进行射击训练,求这人中至少有人的分数高于分的概率.19.(12分)已知椭圆:过点,其左、右顶点分别为,,上顶点为,直线与直线的斜率之积为.(1)求椭圆的方程;(2)如图,直线:分别与线段(不含端点)和线段的延长线交于,两点,直线与椭圆的另一交点为,求证:,,三点共线.20.(12分)设圆的圆心为﹐直线l过点且与x轴不重合,直线l交圆于A,B两点.过作的平行线交于点P.(1)求点P的轨迹方程;(2)设点P的轨迹为曲线E,直线l交E于M,N两点,C在线段上运动,原点O关于C的对称点为Q,求四边形面积的取值范围;21.(12分)已知的离心率为,短轴长为2,F为右焦点(1)求椭圆的方程;(2)在x轴上是否存在一点M,使得过F的任意一条直线l与椭圆的两个交点A,B,恒有,若存在求出M的坐标,若不存在,说明理由22.(10分)已知函数,且(1)求曲线在点处的切线方程;(2)求函数在区间上的最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据给定条件利用等差数列前n项和公式列式计算即可作答.【详解】依题意,层塔从上层到下层挂灯盏数依次排成一列可得等差数列,,于是得,解得,,所以塔的底层共有灯盏.故选:C2、D【解析】令椭圆C的右焦点,由已知条件可得四边形为平行四边形,再利用椭圆定义计算作答.【详解】令椭圆C的右焦点,依题意,线段与互相平分,于是得四边形为平行四边形,因此,而椭圆:的长半轴长,所以.故选:D3、A【解析】由视图确定该几何体的特征,即可得解.【详解】由主视图可以看出,A点在面上的投影为的中点,由俯视图可以看出C点在面上的投影为的中点,所以其左视图为如图所示的等腰直角三角形,直角边长为,于是左视图的面积为故选:A.4、D【解析】过作准线的垂线,垂足为,则,当且仅当三点共线时等号成立,此时,故,所以,选D5、C【解析】由题意可得且,从而求出点的坐标,将其代入双曲线方程中,即可得出离心率.【详解】由题意,四边形为菱形,如图,则且,分别为的左,右支上的点,设点在第二象限,在第一象限.由双曲线的对称性,可得,过点作轴交轴于点,则,所以,则,所以,所以,则,即,解得,或,由双曲线的离心率,所以取,则故选:C6、C【解析】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到直线的距离为,则由条件得,整理得所以,解得.选C7、B【解析】设直线方程为,联立,利用判别式可得,进而可求,再结合双曲线的定义可求,即得.【详解】可设直线方程为,联立,得,由题意得,∴,,∴,即,由双曲线定义得,.故选:B.8、B【解析】根据的取值分类讨论说明【详解】时方程化为,为直线,时,方程化为,为椭圆,时,方程化为,为双曲线,而,因此曲线不可能是圆故选:B9、C【解析】作出不等式组对应的可行域,再利用数形结合分析求解.【详解】解:作出不等式组对应的可行域为如图所示的阴影部分区域,由得,它表示斜率为纵截距为的直线系,当直线平移到点时,纵截距最大,最大.联立直线方程得得.所以.故选:C10、C【解析】∵“”⇒“方程表示焦点在轴上的椭圆”,“方程表示焦点在轴上的椭圆”⇒“”,∴“”是“方程表示焦点在轴上的椭圆”的充要条件,故选C.11、D【解析】结合导数以及函数的奇偶性判断出的单调性,由此化简不等式来求得不等式的解集.【详解】当时,单调递增,,所以单调递增.因为是偶函数,所以当时,单调递减.,,,或.即不等式的解集为.故选:D12、D【解析】方程表示空间中的点到坐标原点的距离为2,从而可知图形的形状【详解】由,得,表示空间中的点到坐标原点的距离为2,所以方程所表示的图形是以原点为球心,2为半径的球,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先根据求出圆的方程,再由的面积的最大值结合离心率求出和的值,进而求出面积的最小值.【详解】解:由题意,设,,因为即两边平方整理得:所以圆心为,半径因为的面积的最大值为3所以,解得:因为椭圆离心率即,所以由得:所以面积的最小值为:故答案为:.【点睛】思路点睛:本题先根据已知的比例关系求出阿波罗尼斯圆的方程,再利用已知面积和离心率求出椭圆的方程,进而求得面积的最值.14、【解析】建立合适空间直角坐标系,分别表示出点的坐标,然后求解出平面的一个法向量,利用公式求解出点到平面的距离.【详解】以AB的中点O为坐标原点,分别以OE,OB所在的直线为x轴、y轴,过垂直于平面的方向为轴,建立如下图所示的空间直角坐标系,则,,设平面ACE的法向量,则,即,令,∴故点D到平面ACE的距离.故答案:.15、##【解析】结合椭圆的定义求得正确答案.【详解】依题意,椭圆方程为,所以,所以是椭圆的右焦点,设左焦点为,根据椭圆的定义可知,,所以的最大值为.故答案为:16、①.②.【解析】分别根据椭圆、双曲线的标准方程的特征建立不等式即可求解.【详解】当方程表示椭圆时,则有且,所以的取值范围是;当方程表示双曲线时,则有或,所以的取值范围是.故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)证明见解析,【解析】(1)直接利用等差中项的应用求出的值,进一步求出数列的通项公式和的值;(2)利用等比数列的定义即可证明数列为等比数列,进一步求出数列的和.【小问1详解】等差数列的前三项依次为,4,,∴,解得;故首项为2,公差为2,故,前项和为,且,整理得,解得或-11(负值舍去).∴,k=10.【小问2详解】由(1)得:,故(常数),故数列是等比数列;∴.18、(1),平均分为;(2).【解析】(1)利用频率直方图中所有矩形面积之和为可求得的值,将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全部相加可得平均成绩;(2)分析可知所抽取的人中,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:根据频率分布直方图得到,解得.这组样本数据平均数为.【小问2详解】解:根据频率分布直方图得到,分数在、内的频率分别为、,所以采用分层抽样的方法从样本中抽取的人,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,记“人中至少有人的分数高于分”为事件.则所有的基本事件有、、、、、、、、、、、、、、,共种.事件包含的基本事件有、、、、、、、、,共种,所以.19、(1);(2)证明见解析.【解析】(1)由和,联立求解;(2)由(1)易得直线:,直线:,,分别与x=t联立,求得M,N坐标,设,利用,得到,然后两边乘以,结合点P在椭圆上化简得到即可,【详解】(1)在椭圆中,,,,则,,由题意得:,又,解得,,所以椭圆的方程为.(2)由(1)可知,,,,则直线:,直线:,由题意,,联立,同理联立,设,则①,且点满足:,即,两边乘以,可得:,代入①得:,而,则,所以,,三点共线.20、(1)(2)【解析】(1)由得,,再由,可得的轨迹方程;(2)设四边形的面积为,,设直线的方程为,代入椭圆方程,利用韦达定理代入,整理后再利用函数单调性可得答案.【小问1详解】(1)圆的圆心为,因为,所以,因为,所以,又,且,,所以的轨迹方程为.【小问2详解】设四边形面积为,则,可设直线的方程为,代入椭圆方程化简得,>0恒成立.设,则,=,令,则,在上单调递增,,即四边形面积的取值范围.21、(1);(2)存在点M满足条件,点M的坐标为.【解析】(1)根据给定条件直接计算出即可求解作答.(2)假定存在点,当直线l与x轴不重合时,设出l的方程,与椭圆C的方程联立,借助、斜率互为相反数计算得解,再验证直线l与x轴重合的情况即可作答.【小问1详解】依题意,,而离心率,即,解得,所以椭圆C的方程为:.【小问2详解】由(1)知,,假定存在点满足条件,当直线与x轴不重合时,设l的方程为:,由消去x并整理得:,设,则有,因,则直线、斜率互为相反数,于是得:,整理得,即,则有,即,而m为任意实数,则,当直线l与x轴重合时,点A,B为椭圆长轴的两个端点,点也满足,所以存在点M满足条件,点M的坐标为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论