版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京朝阳陈经纶中学数学高二上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中学生中抽取容量为50的样本,则应从高三年级抽取的学生数为()A.10 B.15C.20 D.302.设的内角的对边分别为的面积,则()A. B.C. D.3.如图是函数的导函数的图象,下列说法正确的是()A.函数在上是增函数B.函数在上是减函数C.是函数的极小值点D.是函数的极大值点4.设函数,,,则()A. B.C. D.5.已知实数满足,则的取值范围()A.-1m B.-1m<0或0<mC.m或m-1 D.m1或m-16.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A. B.C. D.7.已知函数,那么“”是“在上为增函数”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则9.已知是等比数列,,,则()A. B.C. D.10.过点(-2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦最长的直线的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=011.双曲线的虚轴长为()A. B.C.3 D.612.设圆:和圆:交于A,B两点,则线段AB所在直线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线是曲线的切线,也是曲线的切线,则__________14.若点P为双曲线上任意一点,则P满足性质:点P到右焦点的距离与它到直线的距离之比为离心率e,若C的右支上存在点Q,使得Q到左焦点的距离等于它到直线的距离的6倍,则双曲线的离心率的取值范围是______15.已知曲线在点处的切线与曲线相切,则______.16.数列满足,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设:函数的定义域为;:不等式对任意的恒成立(1)如果是真命题,求实数的取值范围;(2)如果“”为真命题,“”为假命题,求实数的取值范围18.(12分)如图,在四棱锥中,平面,,且,,,,,为的中点(1)求证:平面;(2)在线段上是否存在一点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,说明理由19.(12分)如图所示,在直三棱柱中,是等腰直角三角形,(1)证明:;(2)若点E是棱的中点,求平面与平面所成锐二面角的余弦值20.(12分)一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速(转/秒)1615129每小时生产有缺陷的零件数(件)10985通过观察散点图,发现与有线性相关关系:(1)求关于的回归直线方程;(2)若实际生产中,允许每小时生产的产品中有缺陷的零件最多为10个,那么机器的运转速度应控制在什么范围内?(参考:回归直线方程为,其中,)21.(12分)如图,在四棱锥中,平面底面ABCD,,,,,(1)证明:是直角三角形;(2)求平面PCD与平面PAB的夹角的余弦值22.(10分)在平面直角坐标系中,动点到点的距离等于点到直线的距离.(1)求动点的轨迹方程;(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,在轴上是否存在一点,使若存在,求出点的坐标;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据抽取比例乘以即可求解.【详解】由题意可得应从高三年级抽取的学生数为,故选:C.2、A【解析】利用三角形面积公式、二倍角正弦公式有,再由三角形内角的性质及余弦定理化简求即可.【详解】由,∴,在中,,∴,解得.故选:A.3、A【解析】根据图象,结合导函数的正负性、极值的定义逐一判断即可.【详解】由图象可知,当时,;当时,,在上单调递增,在上单调递减,可知B错误,A正确;是极大值点,没有极小值,和不是函数的极值点,可知C,D错误故选:A4、A【解析】根据导数得出在的单调性,进而由单调性得出大小关系.【详解】因为,所以在上单调递增.因为,所以,而,所以.因为,且,所以.即.故选:A5、C【解析】把看成动点与所确定的直线的斜率,动点在所给曲线上.【详解】就是点,所确定的直线的斜率,而在上,因为,.故选:C6、B【解析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【详解】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得所求椭圆方程为,故选B法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养7、A【解析】对函数进行求导得,进而得时,,在上为增函数,然后判断充分性和必要性即可.【详解】解:因为的定义域是,所以,当时,,在上为增函数.所以在上为增函数,是充分条件;反之,在上为增函数或,不是必要条件.故选:A.【点睛】本题主要考查充分条件和必要条件的判断,属于中档题.8、C【解析】先举例说明ABD不成立,再根据不等式性质说明C成立.【详解】当时,满足,但不成立,所以A错;当时,满足,但不成立,所以B错;当时,满足,但不成立,所以D错;因为所以,又,因此同向不等式相加得,即C对;故选:C【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.9、D【解析】由,,可求出公比,从而可求出等比数的通项公式,则可求出,得数列是一个等比数列,然后利用等比数的求和公式可求得答案【详解】由题得.所以,所以.所以,所以数列是一个等比数列.所以=.故选:D10、A【解析】当直线被圆截得的最弦长最大时,直线要经过圆心,即圆心在直线上,然后根据两点式方程可得所求【详解】由题意得,圆的方程为,∴圆心坐标为∵直线被圆截得的弦长最大,∴直线过圆心,又直线过点(-2,1),所以所求直线的方程为,即故选:A11、D【解析】根据题意,由双曲线的方程求出的值,即可得答案【详解】因为,所以,所以双曲线的虚轴长为.故选:D.12、A【解析】将两圆的方程相减,即可求两圆相交弦所在直线的方程.【详解】设,因为圆:①和圆:②交于A,B两点所以由①-②得:,即,故坐标满足方程,又过AB的直线唯一确定,即直线的方程为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的几何意义,结合待定系数法进行求解即可.【详解】设曲线的切点为:,由,所以过该切点的切线斜率为:,于切线方程为:,因此有:,设曲线的切点为:,由,所以过该切点的切线斜率为:,于是切线方程为:,因此有:,因为,,即,因此,故答案为:【点睛】关键点睛:根据导数的几何意义进行求解是解题的关键.14、【解析】若Q到的距离为有,由题设有,结合双曲线离心率的性质,即可求离心率的范围.【详解】由题意,,即,整理有,所以或,若Q到的距离为,则Q到左、右焦点的距离分别为、,又Q在C的右支上,所以,则,又,综上,双曲线的离心率的取值范围是.故答案为:【点睛】关键点点睛:若Q到的距离为,根据给定性质有Q到左、右焦点的距离分别为、,再由双曲线性质及已知条件列不等式组求离心率范围.15、2或10【解析】求出在处的导数,得出切线方程,与联立,利用可求.【详解】令,,则,,可得曲线在点处的切线方程为.联立,得,,解得或.故答案为:2或10.16、【解析】对递推关系多递推一次,再相减,可得,再验证是否满足;【详解】∵①时,②①-②得,时,满足上式,.故答案为:.【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由对数函数性质,转化为对任意的恒成立,结合二次函数的性质,即可求解;(2)利用基本不等式,求得当命题是真命题,得到,结合“”为真命题,“”为假命题,分类讨论,即可求解.【小问1详解】解:因为是真命题,所以对任意的恒成立,当时,不等式,显然在不能恒成立;当时,则满足解得,故实数的取值范围为【小问2详解】解:因为,所以,当且仅当时,等号成立若是真命题,则;因为“”为真命题,“”为假命题,所以与一真一假当真假时,所以;当假真时,所以,综上,实数的取值范围为18、(1)证明见解析;(2)存在,.【解析】(1)建立空间直角坐标系,求出平面的法向量和直线的单位向量,从而可证明线面平行.(2)令,,设,求出,结合已知条件可列出关于的方程,从而可求出的值.【详解】证明:过作于点,则,以为原点,,,所在的直线分别为,,轴建立如图所示的空间直角坐标系则,,,
,,,∵为的中点.∴.则,,,设平面的法向量为,则令,则,,∴.∴,即,又平面.∴平面解:令,,设,∴.∴,∴
.由知,平面的法向量为.∵直线与平面所成角的正弦值为,∴,化简得,即,∵,∴,故【点睛】本题考查了利用空间向量证明线面平行,考查了平面法向量的求解,属于中档题.19、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理证出平面,即可证得;(2)以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,根据二面角的向量公式即可求出【小问1详解】如图,连接,由已知可得四边形是正方形,所以在直三棱柱中,平面平面,交线为,在中,可知,所以平面,于因为,所以平面,而平面,所以【小问2详解】如图所示,以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则,于是设平面的法向量为,则,可取而平面的一个法向量为,所以故平面与平面所成锐二面角的余弦值为20、(1);(2)控制在16转/秒内.【解析】(1)结合已知数据,代入公式中,先求出,然后求出,进而可求出,从而可得回归方程.(2)由题意得,即可求出转速的最高速度.【详解】解:(1)由题意知,,所以,则,即关于的回归直线方程为.(2)由可得,解得,所以机器的运转速度应控制在16转/秒内.21、(1)证明见解析(2)【解析】(1)连接BD,在四边形ABCD中求得,在中,取得,得到,由线面垂直的性质证得平面,得到,再由线面垂直的判定定理,证得平面PBD,进而得到,即可证得是直角三角形(2)以为原点,以所在直线为x轴,过点且与平行直线为y轴,所在直线为z轴,建立的空间直角坐标系,分别求得平面和平面的法向量,利用向量的夹角公式,即可求解.【小问1详解】证明:如图所示,连接BD,因为四边形中,可得,,,所以,,则在中,由余弦定理可得,所以,所以因为平面底面,平面底面,底面ABCD,所以平面PAB,因为平面PAB,所以,因为,,所以平面PBD因为平面PBD,所以,即是直角三角形【小问2详解】解:由(1)知平面PAB,取AB的中点O,连接PO,因为,所以,因为平面,平面底面,平面底面,所以底面,以为原点,以所在直线为x轴,过点且与平行的直线为y轴,所在直线为z轴,建立如图所示的空间直角坐标系,设,则,,,,,可得,,,设平面的一个法向量为,则,令,可得,,所以,因为是平面的一个法向量,所以,即平面与平面的夹
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护肤品免责协议书模板
- 工程劳务钢筋合同范本
- 小额贷款平台合同范本
- 房产经纪人的合同范本
- 语文下册画风教案
- 幼儿园大班体育教案《夺球》含反思(2025-2026学年)
- 冬季道路行车交通安全专题教案(2025-2026学年)
- FLUKEC万用表使用方法教案(2025-2026学年)
- 专题全民族浴血奋战抗日战争的胜利高考历史一轮复习素养提升探究统编版·中外历史纲要上教案
- 小学语文二年级教案瀑布教学设计之一
- 俱乐部转让合同模板(3篇)
- 教练员劳务合同范本
- 2025年广东高考生物试卷及答案
- 2026中国华电集团产融控股有限公司校园招聘备考题库附答案
- 贵港市利恒投资集团有限公司关于公开招聘工作人员参考题库附答案
- 2025年小学心理健康测考试试题及解析答案
- 腰椎OLIF手术课件
- 2025年浙江宁波大学公开招聘专任教师5人备考题库附答案
- 体检中心护士长2025年度述职报告
- 2025年农业投资入股协议(生态)
- 2025贵州铜仁市“千名英才·智汇铜仁”本地引才413人备考考试题库及答案解析
评论
0/150
提交评论