版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省靖远第四中2026届数学高一上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“”否定是()A. B.C. D.2.设为上的奇函数,且在上单调递增,,则不等式的解集是()A B.C. D.3.已知,求().A.6 B.7C.8 D.94.已知全集,集合,或,则()A. B.或C. D.5.已知函数(为自然对数的底数),若对任意,不等式都成立,则实数的取值范围是A. B.C. D.6.设,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件8.已知函数的图象经过点,则的值为()A. B.C. D.9.已知,则的取值范围是()A. B.C. D.10.已知集合,则A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.圆在点P(1,)处的切线方程为_____12.已知函数的最大值与最小值之差为,则______13.直线的倾斜角为,直线的倾斜角为,则__________14.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.15.若函数在上单调递增,则的取值范围是__________16.设函数和函数,若对任意都有使得,则实数a的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在圆柱中,,分别是上、下底面圆的直径,且,,分别是圆柱轴截面上的母线.(1)若,圆柱的母线长等于底面圆的直径,求圆柱的表面积.(2)证明:平面平面.18.已知函数,(1)求的解集;(2)当时,若方程有三个不同的实数解,求实数k的取值范围19.某校手工爱好者社团出售自制的工艺品,每件的售价在20元到40元之间时,其销售量(件)与售价(元/件)之间满足一次函数关系,部分对应数据如下表所示.(元/件)20212223……3940(件)440420400380……6040(1)求此一次函数的解析式;(2)若每件工艺品的成本是20元,在不考虑其他因素的情况下,每件工艺品的售价是多少时,利润最大?最大利润是多少?20.已知函数(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求不等式的解集21.设全集为,或,.(1)求,;(2)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据全称命题的否定为特称命题,即可得到答案【详解】全称命题的否定为特称命题,命题“”的否定是,故选:A2、D【解析】根据函数单调性结合零点即可得解.【详解】为上的奇函数,且在上单调递增,,得:或解得.故选:D3、B【解析】利用向量的加法规则求解的坐标,结合模长公式可得.【详解】因为,所以,所以.故选:B.【点睛】本题主要考查平面向量的坐标运算,明确向量的坐标运算规则是求解的关键,侧重考查数学运算的核心素养.4、D【解析】根据交集和补集的定义即可得出答案.【详解】解:因为,或,所以,所以.故选:D5、C【解析】由题意结合函数的单调性和函数的奇偶性求解不等式即可.【详解】由函数的解析式可知函数为定义在R上的增函数,且函数为奇函数,故不等式即,据此有,即恒成立;当时满足题意,否则应有:,解得:,综上可得,实数的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题.6、A【解析】根据充分条件、必要条件的概念求解即可.【详解】因为,所以由,,所以“”是“”成立的充分不必要条件故选:A7、D【解析】若,则,故不充分;若,则,而,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.8、C【解析】将点的坐标代入函数解析式,求出的值即可.【详解】因为函数的图象经过点,所以,则.故选:C.9、B【解析】根据对数函数的性质即可确定的范围.【详解】由对数及不等式的性质知:,而,所以.故选:B10、C【解析】分析:先解指数不等式得集合A,再根据偶次根式被开方数非负得集合B,最后根据补集以及交集定义求结果.详解:因为,所以,因为,所以因此,选C.点睛:合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图二、填空题:本大题共6小题,每小题5分,共30分。11、x-y+2=0【解析】圆,点在圆上,∴其切线方程为,整理得:12、或.【解析】根据幂函数的性质,结合题意,分类讨论,利用单调性列出方程,即可求解.【详解】由题意,函数,当时,函数在上为单调递增函数,可得,解得;当时,显然不成立;当时,函数在上为单调递减函数,可得,解得,综上可得,或.故答案为:或.13、【解析】,所以,,故.填14、9【解析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.15、【解析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题16、【解析】先根据的单调性求出的值域A,分类讨论求得的值域B,再将条件转化为A,进行判断求解即可【详解】是上的递减函数,∴的值域为,令A=,令的值域为B,因为对任意都有使得,则有A,而,当a=0时,不满足A;当a>0时,,∴解得;当a<0时,,∴不满足条件A,综上得.故答案为.【点睛】本题考查了函数的值域及单调性的应用,关键是将条件转化为两个函数值域的关系,运用了分类讨论的数学思想,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)证明见详解【解析】(1)借助圆柱的母线垂直于底面构造直角三角形计算可得半径,然后可得表面积;(2)构造平行四边形证明,结合已知可证.【小问1详解】连接CF、DF,因为CD为直径,记底面半径为R,EF=2R则又解得R=2圆柱的表面积.【小问2详解】连接、、、由圆柱性质知且且四边形为平行四边形又平面CDE,平面CDE平面CDE同理,平面CDE又,平面ABH,平面ABH平面平面.18、(1)答案见解析(2)【解析】(1),然后对和的大小关系进行讨论,利用一元二次不等式的解法即可得答案;(2)令,则,解得或.当时,有一解;由题意,当时,必有两解,数形结合即可求解.【小问1详解】解:,①当时,不等式的解集为;②当时,不等式的解集为;③当时,不等式的解集为【小问2详解】解:当时,令,则,解得或,当时,,得,所以当时,要使方程有三个不同的实数解,则必须有有两个解,即与的图象有2个不同的交点,由图可知,解得,所以实数k的取值范围为.19、(1)(2)每件工艺品的售价为31元时,利润最大,最大利润为2420元【解析】(1)设,任取两级数据代入求得参数值得解析式;(2)由(1)中关系式得出利润与的关系,由二次函数的性质得最大值【小问1详解】设,不妨选择两组数据,代入,可得解得∴一次函数的解析式为【小问2详解】设利润为元,由题意可得,∴当时,,∴每件工艺品的售价为31元时,利润最大,最大利润为2420元20、(1);(2)奇函数;证明见解析;(3)【解析】(1)利用对数的性质可得,解不等式即可得函数的定义域.(2)根据奇偶性的定义证明的奇偶性即可.(3)由的解析式判断单调性,利用对数函数的单调性解不等式即可.【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中数学(北师大版)选修教案新知导学排列
- 大班语言送你一把伞教案反思(2025-2026学年)
- 开学安全教育第一课主题班会xx教案
- 幼儿园特色课程活动方案
- 水土保持技术方案编制及监测报告表范例
- 建筑施工现场环境保护措施实训方案
- 工会夏季员工关怀活动策划报告
- 企业产品质量控制标准化方案
- P2P网络贷款风险分析及报告
- 建筑起重机械施工安全方案
- 2025年嘉兴市经英人才发展服务有限公司城南分公司招录法律专业人才及法律辅助人员16人笔试重点题库及答案解析
- 统编版语文一年级上册第八单元 口语交际:我会想办法 教学课件
- 2025年山西省福利彩票市场管理员招聘备考题库及答案详解参考
- 2026年交管12123学法减分复习考试题库(有一套)
- 手术室护理中精细化管理的应用与手术安全及护理质量保障研究答辩
- 第四章 对数与对数函数(原卷版及全解全析)
- TCABEE《零碳办公建筑评价标准》
- 2025新加坡教育服务(私立教育)行业市场现状供需分析及投资评估规划分析研究报告
- 合作销售矿石协议书
- 年终档案管理总结
- 城市生命线安全工程建设项目可行性研究报告
评论
0/150
提交评论