七年级下学期期末压轴题复习数学试题_第1页
七年级下学期期末压轴题复习数学试题_第2页
七年级下学期期末压轴题复习数学试题_第3页
七年级下学期期末压轴题复习数学试题_第4页
七年级下学期期末压轴题复习数学试题_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、解答题1.如图,在平面直角坐标系中,点,,将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为,,连接交y轴于点C,交x轴于点D.(1)线段可以由线段AB经过怎样的平移得到?并写出,的坐标;(2)求四边形的面积;(3)P为y轴上的一动点(不与点C重合),请探究与的数量关系,给出结论并说明理由.2.已知点C在射线OA上.(1)如图①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD与∠BO′E′的关系(用含α的代数式表示)(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.3.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)4.已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且.(1)________,________;直线与的位置关系是______;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.5.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)根据图1填空:∠1=°,∠2=°;(2)现把三角板绕B点逆时针旋转n°.①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.6.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.7.数学中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的运算,记为,如,则,则.①根据定义,填空:_________,__________.②若有如下运算性质:.根据运算性质填空,填空:若,则__________;___________;③下表中与数x对应的有且只有两个是错误的,请直接找出错误并改正.x1.5356891227错误的式子是__________,_____________;分别改为__________,_____________.8.阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分出来的右边数,其中a,b,c数位相同,若b﹣a=c﹣b,我们称这个多位数为等差数.例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5;413223分成三个数41,32,23,并且满足:32﹣41=23﹣32;所以:357和413223都是等差数.(1)判断:148等差数,514335等差数;(用“是”或“不是”填空)(2)若一个三位数是等差数,试说明它一定能被3整除;(3)若一个三位数T是等差数,且T是24的倍数,求该等差数T.9.观察下面的变形规律:;;;….解答下面的问题:(1)仿照上面的格式请写出=;(2)若n为正整数,请你猜想=;(3)基础应用:计算:.(4)拓展应用1:解方程:=2016(5)拓展应用2:计算:.10.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(GeometricSequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比列数1,,…,它的公比q=;如果an(n为正整数)表示这个等比数列的第n项,那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230…①等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示an;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+an.11.观察下列各式:;;;……根据上面的等式所反映的规律,(1)填空:______;______;(2)计算:12.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,现已知a1=,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…(1)求a2,a3,a4的值;(2)根据(1)的计算结果,请猜想并写出a2016•a2017•a2018的值;(3)计算:a33+a66+a99+…+a9999的值.13.如图,在平面直角坐标系中,点的坐标分别为(1,0)、(-2,0),现同时将点分别向上平移2个单位,再向左平移1个单位,分别得到点的对应点,连接、、.(1)若在轴上存在点,连接,使S△ABM=S□ABDC,求出点的坐标;(2)若点在线段上运动,连接,求S=S△PCD+S△POB的取值范围;(3)若在直线上运动,请直接写出的数量关系.14.已知,点在与之间.(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.15.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点,AB所在直线为x轴,1cm为单位长度,建立一个平面直角坐标系,并用t表示出点P在不同线段上的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在,请求出P点坐标;若不存在,请说明理由.16.对,定义一种新的运算,规定:(其中).已知,.(1)求、的值;(2)若,解不等式组.17.如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形ABCD(点D与点O重合)和边长为4的正方形EFGH的边CO和GH都在x轴上,且点H坐标为(7,0).正方形ABCD以3个单位长度/秒的速度沿着x轴向右运动,记正方形ABCD和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t<4.(1)点F的坐标为;(2)如图2,正方形ABCD向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E运动.连接AP,AE.①求t为何值时,AP所在直线垂直于x轴;②求t为何值时,S=S△APE.18.在平面直角坐标系中,点,的坐标分别为,,现将线段先向上平移3个单位,再向右平移1个单位,得到线段,连接,.(1)如图1,求点,的坐标及四边形的面积;图1(2)如图1,在轴上是否存在点,连接,,使?若存在这样的点,求出点的坐标;若不存在,试说明理由;(3)如图2,在直线上是否存在点,连接,使?若存在这样的点,直接写出点的坐标;若不存在,试说明理由.图2(4)在坐标平面内是否存在点,使?若存在这样的点,直接写出点的坐标的规律;若不存在,请说明理由.19.先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数,满足,……①,,……②,求和的值.本题常规思路是将①②两式联立组成方程组,解得,的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得,由①+②×2可得,这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组,则______,______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数,,定义新运算:,其中,,是常数,等式右边是通常的加法和乘法运算.已知,,那么______.20.如图,和的度数满足方程组,且,.(1)用解方程的方法求和的度数;(2)求的度数.21.(1)阅读下列材料并填空:对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解,用数表可表示为.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x=,y=.(2)仿照(1)中数表的书写格式写出解方程组的过程.22.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组与有相同的解,求a、b的值.23.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.24.某数码专营店销售A,B两种品牌智能手机,这两种手机的进价和售价如表所示:AB进价(元/部)33003700售价(元/部)38004300(1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B种手机数不低于A种手机数的,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案.25.某小区准备新建个停车位,以解决小区停车难的问题.已知新建个地上停车位和个地下停车位共需万元:新建个地上停车位和个地下停车位共需万元,(1)该小区新建个地上停车位和个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过万元而不超过万元,问共有几种建造方案?(3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额.26.阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式;(3)已知,求的整数值.27.对、定义了一种新运算T,规定(其中,均为非零常数),这里等式右边是通常的四则运算,例如:,已知,.(1)求,的值;(2)求.(3)若关于的不等式组恰好有4个整数解,求的取值范围.28.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作.例如,,,,那么,,其中.例如,,,.请你解决下列问题:(1)__________,__________;(2)如果,那么x的取值范围是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.29.在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;(3)点P是直线BD上一个动点,连接PC、PO,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD、∠POB的数量关系30.我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环.两灯交叉照射且不间断巡视.若灯转动的速度是度/秒,灯转动的速度是度/秒,且,满足.若这一带江水两岸河堤相互平行,即,且.根据相关信息,解答下列问题.(1)__________,__________.(2)若灯的光射线先转动24秒,灯的光射线才开始转动,在灯的光射线到达之前,灯转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯的光射线到达之前,若两灯射出的光射线交于点,过点作交于点,则在转动的过程中,与间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)向左平移4个单位,再向下平移6个单位,,;(2)24;(3)见解析【分析】(1)利用平移变换的性质解决问题即可.(2)利用分割法确定四边形的面积即可.(3)分两种情形:点在点的上方,点在点的下方,分别求解即可.【详解】解:(1)点,,又将线段进行平移,使点刚好落在轴的负半轴上,点刚好落在轴的负半轴上,线段是由线段向左平移4个单位,再向下平移6个单位得到,,.(2).(3)连接.,,的中点坐标为在轴上,.,轴,同法可证,,,,同法可证,,,,当点在点的下方时,,,,,当点在点的上方时,.【点睛】本题考查坐标与图形变化—平移,解题的关键是理解题意,学会有分割法求四边形的面积,学会用分类讨论的思想解决问题,属于中考常考题型.2.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.3.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.4.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;(2)先根据内错角相等证GH∥PN,再根据同旁内角互补和等量代换得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ER∥FQ,得∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不变,为2,理由:如图3中,作∠PEM1的平分线交M1Q的延长线于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,则有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.5.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.6.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.7.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根据定义可得:f(10b)=b,即可求得结论;②根据运算性质:f(mn)=f(m)+f(n),f()=f(n)-f(m)进行计算;③通过9=32,27=33,可以判断f(3)是否正确,同样依据5=,假设f(5)正确,可以求得f(2)的值,即可通过f(8),f(12)作出判断.【详解】解:①根据定义知:f(10b)=b,∴f(10)=1,f(103)=3.故答案为:1,3.②根据运算性质,得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990.故答案为:0.6020;0.6990.③若f(3)≠2a-b,则f(9)=2f(3)≠4a-2b,f(27)=3f(3)≠6a-3b,从而表中有三个对应的f(x)是错误的,与题设矛盾,∴f(3)=2a-b;若f(5)≠a+c,则f(2)=1-f(5)≠1-a-c,∴f(8)=3f(2)≠3-3a-3c,f(6)=f(3)+f(2)≠1+a-b-c,表中也有三个对应的f(x)是错误的,与题设矛盾,∴f(5)=a+c,∴表中只有f(1.5)和f(12)的对应值是错误的,应改正为:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c.∵9=32,27=33,∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b.【点睛】本题考查了幂的应用,新定义运算等,解题的关键是深刻理解所给出的定义或规则,将它们转化为我们所熟悉的运算.8.(1)不是,是;(2)见解析;(3)432或456或840或864或888【分析】(1)根据等差数的定义判定即可;(2)设这个三位数是M,,根据等差数的定义可知,进而得出即可.(3)根据等差数的定义以及24的倍数的数的特征可先求出a的值,再根据是8的倍数可确定c的值,又因为,所以可确定a、c为偶数时b才可取整数有意义,排除不符合条件的a、c值,再将符合条件的a、c代入求出b的值,即可求解.【详解】解:(1)∵,∴148不是等差数,∵,∴514335是等差数;(2)设这个三位数是M,,∵,∴,∵,∴这个等差数是3的倍数;(3)由(2)知,∵T是24的倍数,∴是8的倍数,∵2c是偶数,∴只有当35a也是偶数时才有可能是8的倍数,∴或4或6或8,当时,,此时若,则,若,则,若,则,大于70又是8的倍数的最小数是72,之后是80,88当时不符合题意;当时,,此时若,则,若,则,(144、152是8的倍数),当时,,此时若,则,若,则,(216、244是8的倍数),当时,,此时若,则,若,则,若,则,(280,288,296是8的倍数),∵,∴若a是偶数,则c也是偶数时b才有意义,∴和是c是奇数均不符合题意,当时,,当时,,当时,,当时,,当时,,综上,T为432或456或840或864或888.【点睛】本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键.9.(1);(2);(3);(4)x=2017;(5)【分析】(1)类比题目中方法解答即可;(2)根据题目中所给的算式总结出规律,解答即可;(3)利用总结的规律把每个式子拆分后合并即可解答;(4)方程左边提取x后利用(3)的方法计算后,再解方程即可;(5)类比(3)的方法,拆项计算即可.【详解】(1)故答案为:;(2)=故答案为:;(3)计算:==1﹣=;(4)=2016=2016,x=2017;(5).=+()+()+…+().=(1﹣).=.【点睛】本题是数字规律探究题,解决问题基本思路是正确找出规律,根据所得的规律解决问题.10.(1),,;(2);(3)【分析】(1)÷1即可求出q,根据已知数的特点求出a18和an即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)÷1=,a18=1×()17=,an=1×()n﹣1=,故答案为:,,;(2)设S=3+32+33+…+323,则3S=32+33+…+323+324,∴2S=324﹣3,∴S=(3)an=a1•qn﹣1,a1+a2+a3+…+an=.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.11.(1);;(2).【分析】(1)根据已知数据得出规律,,进而求出即可;(2)利用规律拆分,再进一步交错约分得出答案即可.【详解】解:(1);;(2)===.【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.12.(1)a2=2,a3=-1,a4=(2)a2016•a2017•a2018=-1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=代入中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=,a2018=2然后计算a2016•a2017•a2018的值;(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=,代入,得;将a2=2,代入,得;将a3=-1,代入,得.(2)根据(1)的计算结果,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=,a2018=2所以,a2016•a2017•a2018=(-1)××2=-1(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.13.(1)(0,4)或(0,-4);(2);(3)答案见解析【解析】(1)先根据S△ABM=S□ABDC,得出△ABM的高为4,再根据三角形面积公式得到M点的坐标;(2)先计算出S梯形OBDC=5,再讨论:当点P运动到点B时,S△POC的最小值=2,当点P运动到点D时,S△POC的最大值=3,即可判断S=S△PCD+S△POB的取值范围的取值范围;(3)分类讨论:当点P在BD上,如图1,作PE∥CD,根据平行线的性质得CD∥PE∥AB,则∠DCP=∠EPC,∠BOP=∠EPO,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;当点P在线段BD的延长线上时,如图2,同样有∠DCP=∠EPC,∠BOP=∠EPO,由于∠EPO-∠EPC=∠BOP-∠DCP,于是∠BOP-∠DCP=∠CPO;同理可得当点P在线段DB的延长线上时,∠DCP-∠BOP=∠CPO.解:(1)由题意,得C(0,2)∴□ABDC的高为2若S△ABM=S□ABDC,则△ABM的高为4又∵点M是y轴上一点∴点M的坐标为(0,4)或(0,-4)(2)∵B(-2,0),O(0,0)∴OB=2由题意,得C(0,2),D(-3,2)∴OC=2,CD=3∴S梯形OBDC=点在线段上运动,当点运动到端点B时,△PCO的面积最小,为当点运动到端点D时,△PCO的面积最大,为∴S=S△PCD+S△POB=S梯形OBDC-S△PCO=5-S△PCO∴S的最大值为5-2=3,最小值为5-3=2故S的取值范围是:(3)如图:当点在线段上运动时,当点在射线上运动时,当点在射线上运动时,点睛:本题主要考查坐标与图形的性质及三角形的面积.利用分类讨论思想,并构造辅助线利用平行线的性质推理是解题的关键.14.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.15.(1)建立直角坐标系见解析,当0<t≤4时,即当点P在线段AB上时,其坐标为:P(2t,0),当4<t≤7时,即当点P在线段BC上时,其坐标为:P(8,2t﹣8),当7<t≤10时,即当点P在线段CE上时,其坐标为:P(22﹣2t,6);(2)存在,当点P的坐标分别为:P(,0)或P(8,4)时,△APE的面积等于.【分析】(1)建立平面直角坐标系,根据点P的运动速度分别求出点P在线段AB,BC,CE上的坐标;(2)根据(1)中得到的点P的坐标以及,分别列出三个方程并解出此时t的值再进行讨论.【详解】(1)正确画出直角坐标系如下:当0<t≤4时,点P在线段AB上,此时P点的横坐标为,其纵坐标为0;∴此时P点的坐标为:P(2t,0);同理:当4<t≤7时,点P在线段BC上,此时P点的坐标为:P(8,2t﹣8);当7<t≤10时,点P在线段CE上,此时P点的坐标为:P(22﹣2t,6).(2)存在,①如图1,当0<t≤4时,点P在线段AB上,,解得:t(s);∴P点的坐标为:P(,0).②如图2,当4<t≤7时,点P在线段BC上,;∴;解得:t=6(s);∴点P的坐标为:P(8,4).③如图3,当7<t≤10时,点P在线段CE上,;解得:t(s);∵7,∴t(应舍去),综上所述:当P点的坐标为:P(,0)或P(8,4)时,△APE的面积等于.【点睛】本题考查了三角形的面积的计算公式,,在本题计算的过程中根据动点的坐标正确地求出三角形的底边长度和高是解题的关键.16.(1);(2)【分析】(1)先根据规定的新运算列出关于m、n的方程组,再解之即可;(2)由a>0得出2a>a-1,-a-1<-a,根据新定义列出关于a的不等式组,解之即可.【详解】解:(1)由题意,得:,解得;(2)∵a>0,∴2a>a,∴2a>a-1,-a<-a,∴-a-1<-a,∴,解不等式①,得:a<1,解不等式②,得:a≥,∴不等式组的解集为≤a<1.【点睛】本题考查了解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,根据新定义列出相应的方程组和不等式组是解答此题的关键.17.(1)(3,4);(2)①t=时,AP所在直线垂直于x轴;②当t为或时,S=S△APE.【分析】(1)根据直角坐标系得出点F的坐标即可;(2)①根据AP所在直线垂直于x轴,得出关于t的方程,解答即可;②分和两种情况,利用面积公式列出方程即可求解.【详解】(1)由直角坐标系可得:F坐标为:(3,4);故答案为:(3,4);(2)①要使AP所在直线垂直于x轴.如图1,只需要Px=Ax,则t+3=3t,解得:,所以即时,AP所在直线垂直于x轴;②由题意知,OH=7,所以当时,点D与点H重合,所以要分以下两种情况讨论:情况一:当时,GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情况二:当时,如图2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,综上所述,当t为或时,S=S△APE.【点睛】本题考查了平面直角坐标系中点的移动,一元一次方程的应用等问题,理解题意,分类讨论是解题关键.18.(1),,;(2)存在,或;(3)存在,或;(4)存在,的纵坐标总是4或.或者:点在平行于轴且与轴的距离等于4的两条直线上;或者:点在直线或直线上【分析】(1)根据点的平移规律,即可得到对应点坐标;(2)由,可以得到,即可得到P点坐标;(3)由,可以得到,结合点C坐标,就可以求得点Q坐标;(4)由,可以AB边上的高的长度,从而得到点的坐标规律.【详解】(1)∵点,点∴向上平移3个单位,再向右平移1个单位之后对应点坐标为,点∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴设中,AB边上的高为h则:∴∴点在直线或直线上【点睛】本题考查直角坐标系中点的坐标平移规律,由点到坐标轴的距离确定点坐标等知识点,根据相关内容解题是关键.19.(1)-1;1;(2)30元;(3)-11【分析】(1)①+②,可得出的值,①-②,得的值;(2)设购买1支铅笔、1块橡皮、1本日记本分别使用元、元、元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元”列出方程组,再根据方程组的特征求出,进一步可求出;(3)根据新定义,将数值代入新定义里,列方程组求解即可得出答案.【详解】(1)解:①+②,得;①-②,得;故答案为:-1,1;(2)设购买1支铅笔、1块橡皮、1本日记本分别使用元、元、元,根据题意,得:①×②-②得∴(元)答:5本日记本共需30元.(3)①②得∴.【点睛】本题考查了三元一次方程组的应用,熟练读懂题干中的“整体思想”是解题的关键.20.(1),;(2)【分析】(1)把和当做未知数,利用加减消元法解二元一次方程组即可;(2)先证明AB∥EF,则可以得到CD∥AB,∠C+∠CAB=180°,求出∠CAB的度数即可求解.【详解】解:(1)用②+①得:,解得,把代入①解得;(2)∵∴AB∥EF,∵,∴CD∥AB,∴∠C+∠CAB=180°,∵∠CAB=∠EAC+∠BAE,AC⊥AE,∴∠CAE=90°,∴∠CAB=140°∴40°.【点睛】本题考查了平行线的判定和性质,解二元一次方程组,解答本题的关键是明确题意,利用数形结合的思想解答.21.(1)6,10;(2)。【解析】【分析】(1)下行-上行后将下行除以3将的系数化为1即可得方程组的解;(2)类比(1)中方法通过加减法将、的系数化为1可得.【详解】解:(1)下行﹣上行,,故答案为:6,10;(2)所以方程组的解为.【点睛】本题主要考查矩阵法解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解题的关键.22.(1);(2);(3)a=3,b=2.【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x,n+3=y,则方程组化为(1)中的方程组,可求得x,y的值进一步可求出原方程组的解;(3)把am和bn当成一个整体利用已知条件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,继而可求出a、b的值.【详解】解:(1)两个方程相加得,∴,把代入得,∴方程组的解为:;故答案是:;(2)设m+5=x,n+3=y,则原方程组可化为,由(1)可得:,∴m+5=1,n+3=2,∴m=-4,n=-1,∴,故答案是:;(3)由方程组与有相同的解可得方程组,解得,把bn=4代入方程2m﹣bn=﹣2得2m=2,解得m=1,再把m=1代入3m+n=5得3+n=5,解得n=2,把m=1代入am=3得:a=3,把n=2代入bn=4得:b=2,所以a=3,b=2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.23.(1)A的单价30元,B的单价15元(2)购买A奖品8个,购买B奖品22个,花费最少【分析】(1)设A的单价为x元,B的单价为y元,根据题意列出方程组,即可求解;(2)设购买A奖品z个,则购买B奖品为个,购买奖品的花费为W元,根据题意得到由题意可知,,,根据一次函数的性质,即可求解;【详解】解:(1)设A的单价为x元,B的单价为y元,根据题意,得,,A的单价30元,B的单价15元;(2)设购买A奖品z个,则购买B奖品为个,购买奖品的花费为W元,由题意可知,,,,当时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少;【点睛】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.24.(1)该店三月份售出A种手机24部,B种手机10部;(2)共有5种进货方案,分别是A种手机21部,B种手机19部;A种手机22部,B种手机18部;A种手机23部,B种手机17部;A种手机24部,B种手机16部;A种手机25部,B种手机15部【分析】(1)设该店三月份售出A种手机x部,B种手机y部,由“三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍”列出方程组,可求解;(2)设A种手机a部,B种手机(40﹣a)部,由“购进B种手机数不低于A种手机数的,用于购买这两种手机的资金低于140000元”列出不等式组,即可求解.【详解】解:(1)设该店三月份售出A种手机x部,B种手机y部,由题意可得:,解得:,答:该店三月份售出A种手机24部,B种手机10部;(2)设A种手机a部,B种手机(40﹣a)部,由题意可得,解得:20<a≤25,∵a为整数,∴a=21,22,23,24,25,∴共有5种进货方案,分别是A种手机21部,B种手机19部;A种手机22部,B种手机18部;A种手机23部,B种手机17部;A种手机24部,B种手机16部;A种手机25部,B种手机15部.【点睛】本题考查了一元一次不等式组解实际问题的运用,二元一次方程组解实际问题的运用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(1)新建一个地上停车位需0.1万元,新建一个地下停车位需0.5万元;(2)一共2种建造方案;(3)当地上建39个车位地下建21个车位投资最少,金额为14.4万元.【分析】(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,根据等量关系可列出方程组,解出即可得出答案.(2)设新建地上停车位m个,则地下停车位(60-m)个,根据投资金额超过14万元而不超过15万元,可得出不等式组,解出即可得出答案.(3)将m=38和m=39分别求得投资金额,然后比较大小即可得到答案.【详解】解:(1)设新建一个地上停车位需万元,新建一个地下停车位需万元,由题意得:,解得,故新建一个地上停车位需万元,新建一个地下停车位需万元.(2)设新建个地上停车位,由题意得:,解得,因为为整数,所以或,对应的或,故一共种建造方案.(3)当时,投资(万元),当时,投资(万元),故当地上建个车位地下建个车位投资最少,金额为万元.【点睛】本题考查了一元一次不等式组及二元一次方程组的应用,解答本题的关键是仔细审题,将实际问题转化为数学方程或不等式的思想进行求解,有一定难度.26.(1)见解析;(2);(3)或【分析】(1),转化为不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论