河北省沧县风化店中学2026届高一上数学期末学业水平测试模拟试题含解析_第1页
河北省沧县风化店中学2026届高一上数学期末学业水平测试模拟试题含解析_第2页
河北省沧县风化店中学2026届高一上数学期末学业水平测试模拟试题含解析_第3页
河北省沧县风化店中学2026届高一上数学期末学业水平测试模拟试题含解析_第4页
河北省沧县风化店中学2026届高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省沧县风化店中学2026届高一上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=|x3|•ln的图象大致为()A. B.C. D.2.要得到的图像,只需将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位3.祖暅原理也称祖氏原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A,B为两个等高的几何体,p:A、B的体积相等,q:A、B在同一高处的截面积相等.根据祖暅原理可知,p是q的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.已知函数,若关于的方程有四个不同的实数解,且,则的取值范围是()A. B.C. D.5.和函数是同一函数的是()A. B.C. D.6.命题“,有”的否定是()A.,使 B.,有C.,使 D.,使7.已知,则的最大值为()A. B.C.0 D.28.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则9.将函数()的图象向右平移个单位长度后,得到函数的图象,若为偶函数,则()A.5 B.C.4 D.10.已知,则为()A. B.2C.3 D.或3二、填空题:本大题共6小题,每小题5分,共30分。11.设扇形的周长为,面积为,则扇形的圆心角的弧度数是________12.已知幂函数在其定义域上是增函数,则实数___________13.函数的定义域是______________.14.若,则的最大值为________15.给出下列四种说法:(1)函数与函数的定义域相同;(2)函数与的值域相同;(3)若函数式定义在R上的偶函数且在为减函数对于锐角则;(4)若函数且,则;其中正确说法序号是________.16.已知a=0.32,b=413,c=log132,则a三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)当时,解关于的方程;(2)当时,函数在有零点,求实数的取值范围.18.设函数(且,)(1)若是定义在R上的偶函数,求实数k的值;(2)若,对任意的,不等式恒成立,求实数a的取值范围19.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若最大值与最小值之和为5,求的值.20.已知集合,(1)当时,求;21.(1)利用函数单调性定义证明:函数是减函数;(2)已知当时,函数的图象恒在轴的上方,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】判断函数的奇偶性和对称性,利用特殊点的函数值是否对应进行排除即可【详解】f(-x)=|x3|•ln=-|x3|•ln=-f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,f()=ln=ln<0,排除C,故选A【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和特殊值进行排除是解决本题的关键2、A【解析】化简函数,即可判断.【详解】,需将函数的图象向左平移个单位.故选:A.3、C【解析】根据与的推出关系判断【详解】已知A,B为两个等高的几何体,由祖暅原理知,而不能推出,可举反例,两个相同的圆锥,一个正置,一个倒置,此时两个几何体等高且体积相等,但在同一高处的截面积不相等,则是的必要不充分条件故选:C4、D【解析】画出函数的图象,根据对称性和对数函数的图象和性质即可求出【详解】可画函数图象如下所示若关于的方程有四个不同的实数解,且,当时解得或,关于直线对称,则,令函数,则函数在上单调递增,故当时故当时所以即故选:【点睛】本题考查函数方程思想,对数函数的性质,数形结合是解答本题的关键,属于难题.5、D【解析】根据相同的函数定义域,对应法则,值域都相同可知ABC不符合要求,D满足.【详解】的定义域为,值域为,对于A,与的对应法则不同,故不是同一个函数;对于B,的值域为,故不是同一个函数;对于C,的定义域为,故不是同一个函数;对于D,,故与是同一个函数.故选:D6、D【解析】全称命题的否定:将任意改存在并否定原结论,即可知正确选项.【详解】由全称命题的否定为特称命题,∴原命题的否定为.故选:D7、C【解析】把所求代数式变形,转化成,再对其中部分以基本不等式求最值即可解决.【详解】时,(当且仅当时等号成立)则,即的最大值为0.故选:C8、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.9、C【解析】先由函数图象平移规律可得,再由为偶函数,可得(),则(),再由可得出的值.【详解】由题意可知,因为为偶函数,所以(),则(),因为,所以.故选:C.10、C【解析】根据分段函数的定义域求解.【详解】因为,所以故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设扇形的半径和弧长分别为,由题设可得,则扇形圆心角所对的弧度数是,应填答案12、【解析】根据幂函数定义,可求得a值,根据其单调性,即可得答案.【详解】因为为幂函数,所以,解得或,又在其定义域上是增函数,所以,所以.故答案为:13、【解析】根据表达式有意义列条件,再求解条件得定义域.【详解】由题知,,整理得解得.所以函数定义域是.故答案为:.14、【解析】化简,根据题意结合基本不等式,取得,即可求解.【详解】由题意,实数,且,又由,当且仅当时,即时,等号成立,所以,即的最大值为.故答案为:.15、(1)(3)【解析】(1)根据定义域直接判断;(2)分别求出值域即可判断;(3)利用偶函数图形的对称性得出在上的单调性及锐角,可以判断;(4)通过对数性质及对数运算即可判断.【详解】(1)函数与函数的定义域都为.所以(1)正确.(2)函数的值域为而的值域为,所以值域不同,故(2)错误.(3)函数在定义R上的偶函数且在为减函数,则函数在在为增函数,又为锐角,则,所以,故(3)正确.(4)函数且,则,即,得,故(4)错误.故答案为:(1)(3).【点睛】本题主要考查了指数函数、对数函数与幂函数的定义域与值域的求解,函数的奇偶性和单调性的判定,对数的运算,属于函数知识的综合应用,是中档题.16、a>b>c【解析】根据指数函数与对数函数单调性直接判断即可.【详解】由已知得a=0.32<b=413所以a>b>c,故答案为:a>b>c.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)方程变成,令,化简解关于的一元二次方程,从而求出的值.(2)将零点转化为方程有实根,即时有解,令,,得:,从而得出取值范围.【详解】(1),令,则,解得,所以(2),时,设,,,对称轴为,时,,.18、(1)1(2)【解析】(1)由函数奇偶性列出等量关系,求出实数k的值;(2)对原式进行化简,得到对恒成立,分和两种情况分类讨论,求出实数a的取值范围.【小问1详解】由可得,即对恒成立,可解得:【小问2详解】当时,有由,即有,且故有对恒成立,①若,则显然成立②若,则函数在上单调递增故有,解得:;综上:实数a的取值范围为19、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数解析式,根据的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值,即可得到的值解析:已知由,则T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ则-+kπ≤x≤+kπ故f(x)的增区间是[kπ-,kπ+],k∈Z(2)当x∈[0,]时,≤2x+≤∴sin(2x+)∈[-,1]∴∴点睛:这是一道求三角函数递增区间以及利用函数在某区间最大值求得参数的题目,主要考查了两角和的正弦函数公式,正弦函数的单调性,以及正弦函数的定义域和值域,解题的关键是熟练掌握正弦函数的性质,属于中档题20、(1)(2)【解析】(1)解一元二次不等式求得集合,由补集和并集的定义可运算求得结果;(2)分别在和两种情况下,根据交集为空集可构造不等式求得结果.【小问1详解】由题意得,或,,.【小问2详解】,当时,,符合题意,当时,由,得,故a的取值范围为21、(1)略;(2)【解析】(1)根据单调性的定义进行证明即可得到结论;(2)将问题转化为在上恒成立求解,即在上恒成立,然后利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论