版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市徐汇区上海师大附中高一上数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,那么A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)2.已知定义在R上偶函数fx满足下列条件:①fx是周期为2的周期函数;②当x∈0,1时,fx=A12 B.1C.-143.方程的根所在的区间为A. B.C. D.4.已知角的终边在射线上,则的值为()A. B.C. D.5.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,假设甲、乙、丙是唐朝的三位投壶游戏参与者,且甲、乙、丙每次投壶时,投中与不投中是等可能的.若甲、乙、丙各投壶1次,则这3人中至多有1人投中的概率为()A. B.C. D.6.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定7.若函数y=|x|(x-1)的图象与直线y=2(x-t)有且只有2个公共点,则实数t的所有取值之和为()A.2 B.C.1 D.8.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1259.若直线过点且倾角为,若直线与轴交于点,则点的坐标为()A. B.C. D.10.我国东汉数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,在“赵爽弦图”中,若,,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,BC边上的高等于,则______________12.已知甲、乙两组数据已整理成如图所示的茎叶图,则甲组数据的中位数是___________,乙组数据的25%分位数是___________13.11分制乒乓球比赛,每赢一球得1分,当某局打成后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时乙得分的概率为0.6,各球的结果相互独立.在某局打成后,甲先发球,乙以获胜的概率为______.14.函数在上是x的减函数,则实数a的取值范围是______15.计算:__________.16.—个几何体的三视图如图所示,则该几何体的体积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆O:,点,点,直线l过点P(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积18.在三棱柱中,侧棱底面,点是的中点.(1)求证:;(2)求证:;(3)求直线与平面所成的角的正切值.19.已知扇形AOB的圆心角α为,半径长R为6,求:(1)弧AB的长;(2)扇形的面积20.刘先生购买了一部手机,欲使用某通讯网络最近推出的全年免流量费用的套餐,经调查收费标准如下表:套餐月租本地话费长途话费套餐甲12元0.3元/分钟0.6元/分钟套餐乙无0.5元/分钟0.8元/分钟刘先生每月接打本地电话时间是长途电话的5倍(手机双向收费,接打话费相同)(1)设刘先生每月通话时间为x分钟,求使用套餐甲所需话费的函数及使用套餐乙所需话费的函数;21.△ABC的顶点坐标分别为A(1,3),B(5,7),C(10,12),求BC边上的高所在的直线的方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用数轴,取所有元素,得【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理2、B【解析】根据函数的周期为2和函数fx是定义在R上的偶函数,可知flog【详解】因为fx是周期为2所以flog又函数fx定义在R上的偶函数,所以又当x∈0,1时,fx=所以flog23故选:B.3、C【解析】令函数,则方程的根即为函数的零点再根据函数零点的判定定理可得函数零点所在区间【详解】令函数,则方程的根即为函数的零点,再由,且,可得函数在上有零点故选C【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题4、A【解析】求三角函数值不妨作图说明,直截了当.【详解】依题意,作图如下:假设直线的倾斜角为,则角的终边为射线OA,在第四象限,,,,用同角关系:,得;∴;故选:A.5、C【解析】根据题意,列出所有可能,结合古典概率,即可求解.【详解】甲、乙、丙3人投中与否的所有情况为:(中,中,中),(中,中,不中),(中,不中,中),(中,不中,不中),(不中,中,中),(不中,中,不中),(不中,不中,中),(不中,不中,不中),共8种,其中至多有1人投中的有4种,故所求概率为故选:C.6、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D7、C【解析】可直接根据题意转化为方程有两个根,然后利用分类讨论思想去掉绝对值再利用判别式即可求得各个t的值【详解】由题意得方程有两个不等实根,当方程有两个非负根时,令时,则方程为,整理得,解得;当时,,解得,故不满足满足题意;当方程有一个正跟一个负根时,当时,,,解得,当时,方程为,,解得;当方程有两个负根时,令,则方程为,解得,当,,解得,不满足题意综上,t的取值为和,因此t的所有取值之和为1,故选C【点睛】本题是在二次函数的基础上加了绝对值,所以首先需解决绝对值,关于去绝对值直接用分类讨论思想即可;关于二次函数根的分布需结合对称轴,判别式,进而判断,必要时可结合进行判断8、D【解析】根据求得,由此求得的值.【详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D9、C【解析】利用直线过的定点和倾斜角写出直线的方程,求出与轴的交点,得出答案【详解】直线过点且倾角为,则直线方程为,化简得令,解得,点的坐标为故选:C【点睛】本题考查点斜式直线方程的应用,考查学生计算能力,属于基础题10、C【解析】利用平面向量的线性运算及平面向量的基本定理求解即可【详解】∵∴∵∴=∴=,∴故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】设边上的高为,则,求出,.再利用余弦定理求出.【详解】设边上的高为,则,所以,由余弦定理,知故答案为【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平,属于基础题.12、①.45②.35【解析】利用中位数的概念及百分位数的概念即得.【详解】由题可知甲组数据共9个数,所以甲组数据的中位数是45,由茎叶图可知乙组数据共9个数,又,所以乙组数据的25%分位数是35.故答案为:45;35.13、15【解析】依题意还需进行四场比赛,其中前两场乙输一场、最后两场乙赢,根据相互独立事件概率公式计算可得;【详解】解:依题意还需进行四场比赛,其中前两场乙输一场、最后两场乙赢,其中发球方分别是甲、乙、甲、乙;所以乙以获胜的概率故答案为:14、【解析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.15、【解析】直接利用二倍角公式计算得到答案.【详解】.故答案为:.16、30【解析】由三视图可知这是一个下面是长方体,上面是个平躺着的五棱柱构成的组合体长方体的体积为五棱柱的体积是故该几何体的体积为点睛:本题主要考查的知识点是由三视图求面积,体积.本题通过观察三视图这是一个下面是长方体,上面是个平躺着的五棱柱构成的组合体,分别求出长方体和五棱柱的体积,然后相加可得答案三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,进而与圆的方程联立得中点的坐标,,解方程得直线方程,再求三角形面积即可.【小问1详解】解:若直线l的斜率不存在,则l的方程为,此时直线l与圆O相切,符合题意;若直线l的斜率存在,设直线l的方程为,因为直线l与圆O相切,所以圆心(0,0)到l的距离为2,即,解得,所以直线l的方程为,即故直线l的方程为或【小问2详解】解:设直线l的方程为,因为直线l与圆O相交,所以结合(1)得联立方程组消去y得,设,则,设中点,,①代入直线l的方程得,②解得或(舍去)所以直线l的方程为因为圆心到直线l的距离,所以因为N到直线l的距离所以18、(1)见解析(2)见解析(3)【解析】【试题分析】(1)依据题设运用线面平行的判定定理进行分析推证;(2)借助题设条件先证明线面垂直,再运用线面垂直的性质定理进行推证;(3)先运用线面角的定义找出线面角,再运用解三角形求其正切值:(1)如图,令分别为的中点,又∵(2)证明:∠⊥在直三棱柱中,⊥又⊥平面,又⊥(3)由(2)得AC⊥平面∴直线是斜线在平面上的射影∴是直线与平面所成的角.在中,∴,即求直线与平面的正切值为.点睛:立体几何是高中数学重点内容之一,也是高考重点考查的考点和热点.这类问题的设置目的是考查空间线面的位置关系及角度距离的计算.求解本题第一问时,直接依据题设运用线面平行的判定定理进行分析推证;求解第二问,充分借助题设条件先证明线面垂直,再运用线面垂直的性质定理从而使得问题获证;求解第三问时,先运用线面角的定义找出线面角,再运用解三角形求其正切值使得问题获解19、(1)(2)【解析】(1)由弧长公式计算弧长;(2)由扇形面积公式计算面积【小问1详解】弧AB的长为;【小问2详解】面积为20、(1),;(2)答案见解析.【解析】(1)由题可知他每月接打本地电话时间为,接打长途,结合条件即得;(2)利用作差法,然后分类讨论即得.【小问1详解】因为刘先生每月接打本地电话
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑劳务服务合同范本
- 广东税务代理合同范本
- 工程内页资料合同范本
- 护栏焊接安装合同范本
- 户外楼梯制作合同范本
- 异地搬迁项目合同协议
- 打印店代理合同协议书
- 小型土方清运合同范本
- 打包仓库配货合同范本
- 打包物品进货合同范本
- 小学生必读书试题及答案
- 销售部年终总结及明年工作计划
- 工作计划执行跟踪表格:工作计划执行情况统计表
- (完整版)现用九年级化学电子版教材(下册)
- 城市道路路基土石方施工合同
- 教学计划(教案)-2024-2025学年人教版(2024)美术一年级上册
- 国家基本公共卫生服务项目之健康教育
- DL∕ T 1166-2012 大型发电机励磁系统现场试验导则
- 新人教版日语七年级全一册单词默写清单+答案
- HJ 636-2012 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法
- QBT 2739-2005 洗涤用品常用试验方法 滴定分析 (容量分析)用试验溶液的制备
评论
0/150
提交评论