2026届江苏泰兴一中高一上数学期末学业水平测试模拟试题含解析_第1页
2026届江苏泰兴一中高一上数学期末学业水平测试模拟试题含解析_第2页
2026届江苏泰兴一中高一上数学期末学业水平测试模拟试题含解析_第3页
2026届江苏泰兴一中高一上数学期末学业水平测试模拟试题含解析_第4页
2026届江苏泰兴一中高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏泰兴一中高一上数学期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则的零点所在区间为A. B.C. D.2.下列函数在其定义域内是增函数的是()A. B.C. D.3.若,,且,,则函数与函数在同一坐标系中的图像可能是()A. B.C. D.4.如图,质点在单位圆周上逆时针运动,其初始位置为,角速度为2,则点到轴距离关于时间的函数图象大致为()A. B.C. D.5.设集合,则=A. B.C. D.6.设m,n为两条不同的直线,,为两个不同的平面,则下列结论正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则7.已知函数部分图象如图所示,则A. B.C. D.8.函数的定义域是()A.(-1,1) B.C.(0,1) D.9.已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B.C. D.10.设集合,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x),若f(a)=4,则a=_____12.若函数,,则_________;当时,方程的所有实数根的和为__________.13.不等式的解集为_________________.14.函数的定义域是________________.15.______.16.函数是幂函数且为偶函数,则m的值为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=(1)求f(x)的最小正周期;(2)当x∈[-π6,18.现有三个条件:①对任意的都有;②不等式的解集为;③函数的图象过点.请你在上述三个条件中任选两个补充到下面的问题中,并求解(请将所选条件的序号填写在答题纸指定位置)已知二次函数,且满足________(填所选条件的序号).(1)求函数的解析式;(2)设,若函数在区间上的最小值为3,求实数m的值.19.已知函数的部分图象如图所示,其中.(1)求值;(2)若角是的一个内角,且,求的值.20.已知二次函数满足对任意,都有;;的图象与轴的两个交点之间的距离为.(1)求的解析式;(2)记,(i)若为单调函数,求的取值范围;(ii)记的最小值为,若方程有两个不等的根,求的取值范围.21.对于两个定义域相同的函数和,若存在实数,使,则称函数是由“基函数,”生成的.(1)若是由“基函数,”生成的,求实数的值;(2)试利用“基函数,”生成一个函数,且同时满足以下条件:①是偶函数;②的最小值为1.求的解析式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据函数的零点判定定理可求【详解】连续函数在上单调递增,,,的零点所在的区间为,故选B【点睛】本题主要考查了函数零点存在定理的应用,熟记定理是关键,属于基础试题2、A【解析】函数在定义域内单调递减,排除B,单调区间不能用并集连接,排除CD.【详解】定义域为R,且在定义域上单调递增,满足题意,A正确;定义域为,在定义域内是减函数,B错误;定义域为,而在为单调递增函数,不能用并集连接,C错误;同理可知:定义域为,而在区间上单调递增,不能用并集连接,D错误.故选:A3、B【解析】结合指数函数、对数函数的图象按和分类讨论【详解】对数函数定义域是,A错;C中指数函数图象,则,为减函数,C错;BD中都有,则,因此为增函数,只有B符合故选:B4、A【解析】利用角速度先求出时,的值,然后利用单调性进行判断即可【详解】因为,所以由,得,此时,所以排除CD,当时,越来越小,单调递减,所以排除B,故选:A5、C【解析】由补集的概念,得,故选C【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化6、D【解析】根据线面的位置关系可判断A;举反例判断B、C;由面面垂直的判定定理可判断D,进而可得正确选项.详解】对于A:若,,则或,故选项A不正确;对于B:如图平面为平面,平面为平面,直线为,直线为,满足,,,但与相交,故选项B不正确;对于C:如图在正方体中,平面为平面,平面为平面,直线为,直线为,满足,,,则,故选项C不正确;对于D:若,,可得或,若,因为,由面面垂直的判定定理可得;若,可过作平面与相交,则交线在平面内,且交线与平行,由可得交线与垂直,由面面垂直的判定定理可得,故选项D正确;故选:D.7、C【解析】由图可以得到周期,然后利用周期公式求,再将特殊点代入即可求得的表达式,结合的范围即可确定的值.【详解】由图可知,,则,所以,则.将点代入得,即,解得,因为,所以.答案为C.【点睛】已知图像求函数解析式的问题:(1):一般由图像求出周期,然后利用公式求解.(2):一般根据图像的最大值或者最小值即可求得.(3):一般将已知点代入即可求得.8、B【解析】根据函数的特征,建立不等式求解即可.【详解】要使有意义,则,所以函数的定义域是.故选:B9、B【解析】圆的圆心在直线上,设圆心为.圆与直线及都相切,所以,解得.此时半径为:.所以圆的方程为.故选B.10、B【解析】根据交集定义运算即可【详解】因为,所以,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.二、填空题:本大题共6小题,每小题5分,共30分。11、1或8【解析】当时,,当时,,分别计算出的值,然后在检验.【详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【点睛】本题考查分段函数根据函数值求自变量,属于基础题.12、①.0②.4【解析】直接计算,可以判断的图象和的图象都关于点中心对称,所以所以两个函数图象的交点都关于点对称,数形结合即可求解.【详解】因为,所以,分别作出函数与的图象,图象的对称中心为,令,可得,当时,,所以的对称中心为,所以两个函数图象的交点都关于点对称,当时,两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则,,所以,所以方程的所有实数根的和为,故答案为:,【点睛】关键点点睛:本题的关键点是判断出的图象和的图象都关于点中心对称,作出函数图象可知两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则和关于中心对称,和关于中心对称,所以,,即可求解.13、或.【解析】利用一元二次不等式的求解方法进行求解.【详解】因为,所以,所以或,所以不等式的解集为或.故答案为:或.14、,【解析】根据题意由于有意义,则可知,结合正弦函数的性质可知,函数定义域,,,故可知答案为,,,考点:三角函数性质点评:主要是考查了三角函数的性质的运用,属于基础题15、【解析】首先利用乘法将五进制化为十进制,再利用“倒序取余法”将十进制化为二进制即可.【详解】,根据十进制化为二进制“倒序取余法”如下:可得.故答案为:【点睛】本题考查了进位制的转化,在求解过程中,一般都是先把其它进制转化为十进制,再用倒序取余法转化为其它进制,属于基础题.16、【解析】由函数是幂函数,则,解出的值,再验证函数是否为偶函数,得出答案.【详解】由函数是幂函数,则,得或当时,函数不是偶函数,所以舍去.当时,函数是偶函数,满足条件.故答案为:【点睛】本题考查幂函数的概念和幂函数的奇偶性,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)π(2)x∈-π6,π3时,f(x)【解析】(1)对f(x)化简后得到fx=sin2x-π6【小问1详解】f(x)=所以f(x)的最小正周期为2【小问2详解】当x∈-π故当-π2⩽2x-π6当π2⩽2x-π6⩽当2x-π6∈所以-32⩽f(x)⩽118、(1);(2).【解析】(1)条件①,求出代入根据恒成立可得;条件②由一元二次不等式解的性质可得;条件③代入可得;分别根据选择①②,①③,②③,均可通过联立方程组可得结果;(2)求出函数的对称轴,将对称轴和区间的端点进行比较,根据函数的单调性列出关于的方程解出即可.【详解】(1)条件①:因为,所以,即对任意的x恒成立,所以,解得.条件②:因为不等式的解集为,所以,即.条件③:函数的图象过点,所以.选择条件①②:,,,此时;选择条件①③:,则,,,此时;选择条件②③:,则,,,此时.(2)由(1)知,其对称轴为,①当,即时,,解得;②当,即时,,解得(舍);③当,即时,,无解.综上所述,所求实数m的值为.【点睛】二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.19、(1),,,(2)【解析】(1)根据图象的特征,列式确定的值;(2)根据(1)的结果,代入解析式,得,结合同角三角函数基本关系式,即可求解.【小问1详解】由图象可知,,解得:,,,解得:,当时,,得,因为,所以,综上可知,,,,;【小问2详解】由(1)可知,,即,因为,解得:20、(1);(2)(i);(ii)或.【解析】(1)根据二次函数的对称轴、求参数a、b、c,写出的解析式;(2)(i)利用二次函数的性质,结合的区间单调性求的取值范围;(ii)讨论、、,结合二次函数的性质求最小值的表达式,再令并应用数形结合的方法研究的零点情况求的取值范围.【详解】(1)设由题意知:对称轴,,又,则,,设的两根为,,则,,由已知:,解得.(2)(i),其对称轴为为单调函数,或,解得或.的取值范围是.(ii),,对称轴①当,即时,区间单调递增,.②当,即时,在区间单调递减,③当,即时,,函数零点即为方程的根令,即,作出的简图如图所示①当时,,或,解得或,有个零点;②当时,有唯一解,解得,有个零点;③当时,有两个不同解,,解得或,有4个零点;④当时,,,解得,有个零点;⑤当时,无解,无零点综上:当或时,有个零点.【点睛】关键点点睛:第二问,(i)分类讨论并结合二次函数区间单调性求参数范围,(ii)分类讨论求最小值的表达式,再应用换元法及数形结合求参数范围.21、(1);(2)【解析】⑴由已知得,求解即可求得实数的值;⑵设,则,继而证得是偶函数,可得与的关系,得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论