湖南省邵阳市邵东一中2026届高二数学第一学期期末学业质量监测模拟试题含解析_第1页
湖南省邵阳市邵东一中2026届高二数学第一学期期末学业质量监测模拟试题含解析_第2页
湖南省邵阳市邵东一中2026届高二数学第一学期期末学业质量监测模拟试题含解析_第3页
湖南省邵阳市邵东一中2026届高二数学第一学期期末学业质量监测模拟试题含解析_第4页
湖南省邵阳市邵东一中2026届高二数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵阳市邵东一中2026届高二数学第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆心在直线上,且过点,并与直线相切的圆的方程为()A. B.C. D.2.阿波罗尼斯约公元前年证明过这样一个命题:平面内到两定点距离之比为常数且的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A,B间的距离为2,动点P与A,B距离之比满足:,当P、A、B三点不共线时,面积的最大值是()A. B.2C. D.3.数列是等比数列,是其前n项之积,若,则的值是()A.1024 B.256C.2 D.5124.已知双曲线的右焦点为F,双曲线C的右支上有一点P满是(点O为坐标原点),那么双曲线C的离心率为()A. B.C. D.5.若直线的方向向量为,平面的法向量为,则()A. B.C. D.与相交但不垂直6.命题若,且,则,命题在中,若,则.下列命题中为真命题的是()A. B.C. D.7.已知函数,则函数在点处的切线方程为()A. B.C. D.8.我们知道∶用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,已知过CD与E的平面与圆锥侧面的交线是以E为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于()A. B.C. D.19.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长的一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺10.在复平面内,复数对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A. B.C. D.12.已知一个圆锥的体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线C:y2=2px(p>0)上的点P(1,y0)(y0>0)到焦点的距离为2,则p=__14.抛物线的焦点坐标为__________15.已知双曲线C的方程为,,,双曲线C上存在一点P,使得,则实数a的最大值为___________.16.已知函数(1)若时函数有三个互不相同的零点,求实数的取值范围;(2)若对任意的,不等式在上恒成立,求实数的取值范围三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.18.(12分)已知点是圆上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于、两点,记、的斜率分别是、,以、为直径的圆的面积分别为、当、都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由19.(12分)已知椭圆的左,右焦点分别为,三个顶点(左、右顶点和上顶点)构成的三角形的面积为,离心率为方程的根.(1)求椭圆方程;(2)椭圆的一个内接平行四边形的一组对边分别过点和,如图,若这个平行四边形面积为,求平行四边形的四个顶点的纵坐标的乘积.20.(12分)红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表Ⅰ中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合表Ⅰ温度x/℃20222527293135产卵数y/个711212465114325(1)请借助表Ⅱ中的数据,求出回归模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)类似的,可以得到回归模型②的方程为,试求两种模型下温度为时的残差;(3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合(2)说明哪个模型的拟合效果更好参考数据:.附:回归方程中,相关指数.21.(12分)已知等差数列}的公差为整数,为其前n项和,,(1)求{}的通项公式:(2)设,数列的前n项和为,求22.(10分)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的封闭图形.(1)设,,求这个几何体的表面积;(2)设G是弧DF的中点,设P是弧CE上的一点,且.求异面直线AG与BP所成角的大小.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设圆的圆心,表示出半径,再由圆心到切线距离等于半径即可列出方程求得参数及圆的方程.【详解】∵圆的圆心在直线上,∴设圆心为(a,-a),∵圆过,∴半径r=,又∵圆与相切,∴半径r=,则,解得a=2,故圆心为(2,-2),半径为,故方程为.故选:A.2、C【解析】根据给定条件建立平面直角坐标系,求出点P的轨迹方程,探求点P与直线AB的最大距离即可计算作答.【详解】依题意,以线段AB的中点为原点,直线AB为x轴建立平面直角坐标系,如图,则,,设,因,则,化简整理得:,因此,点P的轨迹是以点为圆心,为半径的圆,点P不在x轴上时,与点A,B可构成三角形,当点P到直线(轴)的距离最大时,的面积最大,显然,点P到轴的最大距离为,此时,,所以面积的最大值是故选:C3、D【解析】设数列的公比为q,由已知建立方程求得q,再利用等比数列的通项公式可求得答案.【详解】解:因为数列是等比数列,是其前n项之积,,设数列的公比为q,所以,解得,所以,故选:D.4、D【解析】分析焦点三角形即可【详解】如图,设左焦点为,因为,所以不妨设,则离心率故选:D5、B【解析】通过判断直线的方向向量与平面的法向量的关系,可得结论【详解】因为,,所以,所以∥,因为直线的方向向量为,平面的法向量为,所以,故选:B6、A【解析】根据不等式性质及对数函数的单调性判断命题的真假,根据大角对大边及正弦定理可判断命题的真假,再根据复合命题真假的判断方法即可得出结论.【详解】解:若,且,则,当时,,所以,当时,,所以,综上命题为假命题,则为真命题,在中,若,则,由正弦定理得,所以命题为真命题,为假命题,所以为真命题,,,为假命题.故选:A.7、C【解析】依据导数几何意义去求函数在点处的切线方程即可解决.【详解】则,又则函数在点处的切线方程为,即故选:C8、C【解析】由圆锥的底面半径和高及E的位置可得,建立适当的平面直角坐标系,可得C的坐标,设抛物线的方程,将C的坐标代入求出抛物线的方程,进而可得焦点到其准线的距离【详解】设AB,CD的交点为,连接PO,由题意可得PO⊥面AB,所以PO⊥OB,由题意OB=OP=OC=2,因为E是母线PB的中点,所以,由题意建立适当的坐标系,以BP为y轴以OE为x轴,E为坐标原点,如图所示∶可得∶,设抛物线的方程为y2=mx,将C点坐标代入可得,所以,所以抛物线的方程为∶,所以焦点坐标为,准线方程为,所以焦点到其准线的距离为故选:C9、A【解析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A10、D【解析】根据复数在复平面内的坐标表示可得答案.【详解】解:由题意得:在复平面上对应的点为,该点在第四象限.故选:D11、B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B12、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据已知条件,结合抛物线的定义,即可求解【详解】解:∵抛物线C:y2=2px(p>0)上的点P(1,y0)(y0>0)到焦点的距离为2,∴由抛物线的定义可得,,解得p=2故答案为:214、【解析】化成标准形式,结合焦点定义即可求解.【详解】由,得,故抛物线的焦点坐标为故答案为:15、2【解析】设出,根据条件推出在圆上运动,根据题意要使双曲线和圆有交点,则得答案.【详解】设点,由得:,所以,化简得:,即满足条件的点在圆上运动,又点存在于上,故双曲线与圆有交点,则,即实数a的最大值为2,故答案为:216、(1)(2)【解析】(1)将函数有三个互不相同的零点转化为有三个互不相等的实数根,令,求导确定单调性求出极值即可求解;(2)求导确定单调性,结合以及得,由得,结合二次函数单调性求出最小值即可求解.【小问1详解】当时,.函数有三个互不相同的零点,即有三个互不相等的实数根令,则,令得或,在和上均减函数,在上为增函数,极小值为,极大值为,的取值范围是;【小问2详解】,且,当或时,;当时,函数的单调递增区间为和,单调递减区间为当时,,又,,又,又在上恒成立,即,即当时,恒成立在上单减,故最小值为,的取值范围是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ).【解析】本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.第一问,利用线面平行的定理,先证明线线平行,再证明线面平行;第二问,可以先找到线面角,再在三角形中解出正弦值,还可以用向量法建立直角坐标系解出正弦值.试题解析:(Ⅰ)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.从而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以APH是PA与平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.从而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)设平面PCE的法向量为n=(x,y,z),由得设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα==.所以直线PA与平面PCE所成角的正弦值为.考点:线线平行、线面平行、向量法.18、(1);(2)是定值,.【解析】(1)由条件可得点轨迹满足椭圆定义,设出椭圆方程,由,的值可得的值,从而求得轨迹方程;(2)设出直线的方程,结合韦达定理,分别求得为定值,也为定值,从而可得是定值【小问1详解】由题意知,,根据椭圆的定义知点的轨迹是以,为焦点的椭圆,设椭圆的方程为,则,,曲线的方程为;【小问2详解】由题意知直线的方程为且m≠0),设直线与椭圆的交点为,,,,由得,,,,,,,,,,是定值,为.19、(1);(2).【解析】(1)由椭圆离心率的性质及一元二次方程的根可得,再由椭圆参数关系、已知三角形面积求椭圆参数,即可得椭圆方程.(2)设直线,联立椭圆方程并结合韦达定理求,进而可得,再根据求参数t,可得,结合椭圆的对称性求,即可求结果.【小问1详解】由的根为,所以椭圆的离心率,依题意,,解得,即椭圆的方程为;【小问2详解】设直线,联立,消去得,由韦达定理得:,所以,所以,所以椭圆的内接平行四边形面积.所以,解得或(舍去),所以,根据椭圆的对称性知:,故平行四边形的四个顶点的纵坐标的乘积为.20、(1)(或)(2)模型①:1.54;模型②:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论