版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省大竹县观音中学数学高一上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.2.将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是A.事件“甲分得1张白牌”与事件“乙分得1张红牌”B.事件“甲分得1张红牌”与事件“乙分得1张蓝牌”C.事件“甲分得1张白牌”与事件“乙分得2张白牌”D.事件“甲分得2张白牌”与事件“乙分得1张黑牌”3.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种加密密钥密码系统,其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文.现在加密密钥为,如“4”通过加密后得到密文“2”,若接受方接到密文“”,则解密后得到的明文是()A. B.C.2 D.4.已知集合,,若,则实数a值的集合为()A. B.C. D.5.若函数在上是增函数,则实数的取值范围是()A. B.C. D.6.已知,,,则、、的大小关系为()A. B.C. D.7.若,,,则()A. B.C. D.8.设集合,则()A.{1,3} B.{3,5}C.{5,7} D.{1,7}9.已知角的终边过点,则()A. B.C. D.110.设函数y=,当x>0时,则y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值8二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在上单调递增,则a的取值范围为______12.已知球O的内接圆柱的轴截面是边长为2的正方形,则球O的表面积为________.13.函数的零点是___________.14.命题“”的否定是_________.15.若是第三象限的角,则是第________象限角;16.如图,若集合,,则图中阴影部分表示的集合为___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数的自变量的取值范围为时,函数值的取值范围恰为,就称区间为的一个“和谐区间”.(1)先判断“函数没有“和谐区间”是否正确,再写出函数“和谐区间”;(2)若是定义在上的奇函数,当时,.(i)求的“和谐区间”;(ii)若函数的图象是在定义域内所有“和谐区间”上的图象,是否存在实数,使集合恰含有个元素,若存在,求出的取值范围;若不存在,请说明理由.18.阅读与探究人教A版《普通高中课程标准实验教科书数学4(必修)》在第一章小结中写道:将角放在直角坐标系中讨论不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位圆上点的变化之间的对应关系,从而用单位圆上点的纵坐标、横坐标来表示圆心角的正弦函数、余弦函数.因此,正弦函数、余弦函数的基本性质与圆的几何性质(主要是对称性)之间存在着非常紧密的联系.例如,和单位圆相关的“勾股定理”与同角三角函数的基本关系有内在的一致性;单位圆周长为与正弦函数、余弦函数的周期为是一致的;圆的各种对称性与三角函数的奇偶性、诱导公式等也是一致的等等.因此,三角函数的研究过程能够很好地体现数形结合思想.依据上述材料,利用正切线可以讨论研究得出正切函数的性质.比如:由图1.2-7可知,角的终边落在四个象限时均存在正切线;角的终边落在轴上时,其正切线缩为一个点,值为;角的终边落在轴上时,其正切线不存在;所以正切函数的定义域是.(1)请利用单位圆中的正切线研究得出正切函数的单调性和奇偶性;(2)根据阅读材料中途1.2-7,若角为锐角,求证:.19.已知函数⑴判断并证明函数的奇偶性;⑵若,求实数的值.20.设全集U=R,集合,(1)当时,求;(2)若A∩B=A,求实数a的取值范围21.定义:若对定义域内任意x,都有(a为正常数),则称函数为“a距”增函数(1)若,(0,),试判断是否为“1距”增函数,并说明理由;(2)若,R是“a距”增函数,求a的取值范围;(3)若,(﹣1,),其中kR,且为“2距”增函数,求的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先考虑函数在上是增函数,再利用复合函数的单调性得出求解即可.【详解】设函数在上是增函数,解得故选:A【点睛】本题主要考查了由复合函数的单调性求参数范围,属于中档题.2、C【解析】对于,事件“甲分得1张白牌”与事件“乙分得1张红牌”可以同时发生,不是互斥事件;对于事件“甲分得1张红牌”与事件“乙分得1张蓝牌”可能同时发生,不是互斥事件;对于,事件“甲分得2张白牌”与事件“乙分得1张黑牌”能同时发生,不是互斥事件;但中的两个事件不可能发生,是互斥事件,故选C.3、A【解析】根据题意中给出的解密密钥为,利用其加密、解密原理,求出的值,解方程即可求解.【详解】由题可知加密密钥为,由已知可得,当时,,所以,解得,故,显然令,即,解得,即故选:A.4、D【解析】,可以得到,求出集合A的子集,这样就可以求出实数值集合.【详解】,的子集有,当时,显然有;当时,;当时,;当,不存在符合题意,实数值集合为,故选:D.【点睛】本题考查了通过集合的运算结果,得出集合之间的关系,求参数问题.重点考查了一个集合的子集,本题容易忽略空集是任何集合的子集这一结论.5、B【解析】令,则可得,解出即可.【详解】令,其对称轴为,要使在上是增函数,则应满足,解得.故选:B.6、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.7、C【解析】先由,可得,结合,,可得,继而得到,,转化,利用两角差的正弦公式即得解【详解】由题意,故故又,故,则故选:C【点睛】本题考查了两角和与差的正弦公式、同角三角函数关系综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题8、B【解析】先求出集合B,再求两集合的交集【详解】由,得,解得,所以,因为所以故选:B9、B【解析】根据三角函数的定义求出,再根据二倍角余弦公式计算可得;【详解】解:∵角的终边过点,所以,∴,故故选:B10、B【解析】由均值不等式可得答案.【详解】由,当且仅当,即时等号成立.当时,函数的函数值趋于所以函数无最大值,有最小值4故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据函数的单调性得到,计算得到答案.【详解】函数在上单调递增,则故答案为:【点睛】本题考查了函数的单调性,意在考查学生的计算能力.12、【解析】根据内接圆柱的轴截面是边长为2的正方形,确定球O的半径,再由球的表面积公式即得。【详解】由题得,圆柱底面直径为2,球的半径为R,球O的内接圆柱的轴截面是边长为2的正方形,则圆柱的轴截面的对角线即为球的直径,故,则球的表面积.故答案为:【点睛】本题考查空间几何体,球的表面积,是常见的考题。13、和【解析】令y=0,直接解出零点.【详解】令y=0,即,解得:和故答案为:和【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解14、,【解析】根据全称命题的否定形式,直接求解.【详解】全称命题“”的否定是“,”.故答案为:,15、一或三【解析】根据的范围求得的范围,从而确定正确答案.【详解】依题意,,,所以当为奇数时,在第三象限;当为偶数时,在第一象限.故答案:一或三16、【解析】图像阴影部分对应的集合为,,故,故填.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)正确,;(2)(i)和,(ii)存在符合题意,理由见解析.【解析】(1)根据和谐区间的定义判断两个函数即可;(2)(i)根据是奇函数求出的解析式,再利用“和谐区间”的定义求出的“和谐区间”,(ii)由(i)可得的解析式,由与都是奇函数,问题转化为与的图象在第一象限内有一个交点,由单调性求出的端点坐标,代入可得临界值即可求解.【小问1详解】函数定义域为,且为奇函数,当时,单调递减,任意的,则,所以时,没有“和谐区间”,同理时,没有“和谐区间”,所以“函数没有“和谐区间”是正确的,在上单调递减,所以在上单调递减,所以值域为,即,所以,所以,是方程的两根,因为,解得,所以函数的“和谐区间”为.【小问2详解】(i)因为当时,所以当时,,所以因为是定义在上的奇函数,所以,所以当时,,可得,设,因为在上单调递减,所以,,所以,,所以,是方程的两个不相等的正数根,即,是方程的两个不相等的正数根,且,所以,,所以在区间上的“和谐区间”是,同理可得,在区间上的“和谐区间”是.所以的“和谐区间”是和,(ii)存在,理由如下:因为函数的图象是以在定义域内所有“和谐区间”上的图象,所以若集合恰含有个元素,等价于函数与函数的图象有两个交点,且一个交点在第一象限,一个交点在第三象限.因为与都是奇函数,所以只需考虑与的图象在第一象限内有一个交点.因为在区间上单调递减,所以曲线的两个端点为,.因为,所以的零点是,,或所以当的图象过点时,,;当图象过点时,,,所以当时,与的图象在第一象限内有一个交点.所以与的图象有两个交点.所以的取值范围是.18、(1)见解析(2)见解析【解析】(1)在单位圆中画出角的正切线,观察随增大正切线的值得变化情况,再观察时,正切线的值随增大时的变化情况,发现正切函数在区间上单调递增.(2)当是锐角时,有,由此得到.解析:(1)当时,增大时正切线的值越来越大;当时,正切线与区间上的情况完全一样;随着角的终边不停旋转,正切线不停重复出现,故可得出正切函数在区间上单调递增;由题意知正切函数的定义域关于原点对称,在坐标系中画出角和,它们的终边关于轴对称,在单位圆中作出它们的正切线,可以发现它们的正切线长度相等,方向相反,即,得出正切函数为奇函数.(2)如图,当为锐角时,在单位圆中作出它的正弦线,正切线,又因为,所以,又,而,故即.点睛:三角函数线是研究三角函数性质(如定义域、值域、周期性、奇偶性等)的重要工具,它体现了数形结合的数学思想,是解三角不等式、三角方程等不可或缺的工具.19、(1)(2)【解析】(1)求出函数的定义域,利用函数的奇偶性的定义判断即可;(2)是奇函数,则结合,求解代入求解即可.【详解】(1)解:是奇函数.证明:要等价于即故的定义域为设任意则又因为所以是奇函数.(2)由(1)知,是奇函数,则联立得即解得20、(1)或(2)【解析】(1)化简集合B,根据补集、并集的运算求解;(2)由条件转化为A⊆B,分类讨论,建立不等式或不等式组求解即可.【小问1详解】当时,,,或,或【小问2详解】由A∩B=A,得A⊆B,当A=∅时,则3a>a+2,解得a>1,当A≠∅时,则,解得,综上,实数a的取值范围是21、(1)见解析;(2);(3).【解析】(1)利用“1距”增函数的定义证明即可;(2)由“a距”增函数的定义得到在上恒成立,求出a的取值范围即可;(3)由为“2距”增函数可得到在恒成立,从而得到恒成立,分类讨论可得到的取值范围,再由,可讨论出的最小值【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级化学下册《蛋白质和维生素》新人教版教案(2025-2026学年)
- 中班科学活动看到了吗附教学教案
- 初中健美操教案(2025-2026学年)
- 课时冀中的地道战第二单元《冀中的地道战》教案
- 人教版高中政治必修一价格变动的影响教案(2025-2026学年)
- 服务营销第版第十讲教案
- 春七年级数学下册幂的运算同底数幂的除法教案新版沪科版
- 幼儿园美术课程形成性评价指导方案
- 人民医院急救流程整改报告
- 家庭教育典型案例分析三篇
- 2025年德州乐陵市市属国有企业公开招聘工作人员(6人)备考笔试试题及答案解析
- 2025年1月辽宁省普通高中学业水平合格性考试生物学试卷(含答案)
- 2025消防心理测试题或答案及答案
- 直播心态培训课件
- 四川省泸州市2024-2025学年高二上学期期末统一考试地理试卷(含答案)
- 2026年日历表全年表(含农历、周数、节假日及调休-A4纸可直接打印)-
- FZ∕T 61002-2019 化纤仿毛毛毯
- 23秋国家开放大学《机电一体化系统设计基础》形考作业1-3+专题报告参考答案
- 开封银行健康知识讲座
- 垃圾房改造方案
- 闭合导线平差计算表-电子表格自动计算
评论
0/150
提交评论