山东省临沂市蒙阴县实验中学2026届高一数学第一学期期末检测模拟试题含解析_第1页
山东省临沂市蒙阴县实验中学2026届高一数学第一学期期末检测模拟试题含解析_第2页
山东省临沂市蒙阴县实验中学2026届高一数学第一学期期末检测模拟试题含解析_第3页
山东省临沂市蒙阴县实验中学2026届高一数学第一学期期末检测模拟试题含解析_第4页
山东省临沂市蒙阴县实验中学2026届高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省临沂市蒙阴县实验中学2026届高一数学第一学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合P=,,则PQ=()A. B.C. D.2.在正方体中,为棱的中点,则A. B.C. D.3.已知幂函数的图象过点,则的值为()A.3 B.9C.27 D.4.在底面为正方形的四棱锥中,侧面底面,,,则异面直线与所成的角为()A. B.C. D.5.,,,则()A. B.C. D.6.已知,则()A.- B.C.- D.7.方程的实数根所在的区间是()A. B.C. D.8.已知函数的值域为,那么实数的取值范围是()A. B.[-1,2)C.(0,2) D.9.在平行四边形中,设,,,,下列式子中不正确是()A. B.C. D.10.已知直线的方程是,的方程是,则下列各图形中,正确的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.潮汐是发生在沿海地区的一种自然现象,是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动.习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流.早先的人们为了表示生潮的时刻,把发生在早晨的高潮叫潮,发生在晚上的高潮叫汐,这是潮汐名称的由来.下表中给出了某市码头某一天水深与时间的关系(夜间零点开始计时).时刻(t)024681012水深(y)单位:米5.04.84.74.64.44.34.2时刻(t)141618202224水深(y)单位:米4.34.44.64.74.85.0用函数模型来近似地描述这些数据,则________.12.若,则________.13.______.14.如图,,,是三个边长为1的等边三角形,且有一条边在同一直线上,边上有2个不同的点,则__________15.如果函数满足在集合上的值域仍是集合,则把函数称为H函数.例如:就是H函数.下列函数:①;②;③;④中,______是H函数(只需填写编号)(注:“”表示不超过x的最大整数)16.直线的倾斜角为,直线的倾斜角为,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中且.设()若,,,求方程在区间内的解集()若函数满足:图象关于点对称,在处取得最小值,试确定、和应满足的与之等价的条件18.记.(1)化简;(2)若为第二象限角,且,求的值.19.若幂函数在其定义域上是增函数.(1)求的解析式;(2)若,求的取值范围.20.化简计算:(1)计算:;(2)化简:21.已知函数的图象关于直线对称,若实数满足时,的最小值为1(1)求的解析式;(2)将函数的图象向左平移个单位后,得到的图象,求的单调递减区间

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据集合交集定义求解.【详解】故选:B【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.2、C【解析】画出图形,结合图形根据空间中的垂直的判定对给出的四个选项分别进行分析、判断后可得正确的结论【详解】画出正方体,如图所示对于选项A,连,若,又,所以平面,所以可得,显然不成立,所以A不正确对于选项B,连,若,又,所以平面,故得,显然不成立,所以B不正确对于选项C,连,则.连,则得,所以平面,从而得,所以.所以C正确对于选项D,连,若,又,所以平面,故得,显然不成立,所以D不正确故选C【名师点睛】本题考查线线垂直的判定,解题的关键是画出图形,然后结合图形并利用排除法求解,考查数形结合和判断能力,属于基础题3、C【解析】求出幂函数的解析式,然后求解函数值【详解】幂函数的图象过点,可得,解得,幂函数的解析式为:,可得(3)故选:4、C【解析】由已知可得PA⊥平面ABCD,底面ABCD为正方形,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以ACM就是异面直线PB与AC所成的角,再求解即可.【详解】由题意:底面ABCD为正方形,侧面底面,,面面,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,∵PM∥AD,AD∥BC,PM=AD,AD=BC∴PBCM是平行四边形,∴PB∥CM,所以∠ACM就是异面直线PB与AC所成的角设PA=AB=a,在三角形ACM中,,∴三角形ACM是等边三角形所以∠ACM等于60°,即异面直线PB与AC所成的角为60°故选:C.【点睛】思路点睛:先利用面面垂直得到PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,得到∠ACM就是异面直线PB与AC所成的角5、B【解析】根据对数函数和指数函数的单调性即可得出,,的大小关系【详解】,,,故选:6、D【解析】根据诱导公式可得,结合二倍角的余弦公式即可直接得出结果.【详解】由题意得,,即,所以.故选:D.7、B【解析】令,因为,且函数在定义域内单调递增,故方程的解所在的区间是,故选B.8、B【解析】先求出函数的值域,而的值域为,进而得,由此可求出的取值范围.【详解】解:因为函数的值域为,而的值域为,所以,解得,故选:B【点睛】此题考查由分段函数的值域求参数的取值范围,分段函数的值域等于各段上的函数的值域的并集是解此题的关键,属于基础题.9、B【解析】根据向量加减法计算,再进行判断选择.【详解】;;;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.10、D【解析】对于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,对应l2也符合,二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】根据题意条件,结合表内给的数据,通过一天内水深的最大值和最小值,即可列出关于、之间的关系,通过解方程解出、,即可求解出答案.【详解】由表中某市码头某一天水深与时间的关系近似为函数,从表中数据可知,函数的最大值为5.0,最小值为4.2,所以,解得,,故.故答案为:或写成.12、【解析】利用三角函数的诱导公式,化简得到原式,代入即可求解.【详解】因为,由故答案为:13、2【解析】利用两角和的正切公式进行化简求值.【详解】由于,所以,即,所以故答案为:【点睛】本小题主要考查两角和的正切公式,属于中档题.14、9【解析】以为原点建立平面直角坐标系,依题意可设三个点坐标分别为,故.【点睛】本题主要考查向量的加法、向量的数量积运算;考查平面几何坐标法的思想方法.由于题目给定三个全等的三角形,而的位置不确定,故考虑用坐标法来解决.在利用坐标法解题时,首先要选择合适的位置建立平面直角坐标系,建立后用坐标表示点的位置,最后根据题目的要求计算结果.15、③④【解析】根据新定义进行判断.【详解】根据定义可以判断①②在集合上的值域不是集合,显然不是H函数.③④是H函数.③是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足是H函数.④是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足H函数.故答案为:③④16、【解析】,所以,,故.填三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)解集为;(2)见解析.【解析】分析:()由平面向量数量积公式、结合辅助角公式可得,令,从而可得结果;()“图象关于点对称,且在处取得最小值”.因此,根据三角函数的图象特征可以知道,,故有,∴,,当且仅当,时,的图象关于点对称;此时,,对讨论两种情况可得使得函数满足“图象关于点对称,且在处取得最小值的充要条件”是“,时,,;或当时,,”.详解:()根据题意,当,,时,,,则有或,即或,又因为,故在内解集为()解:因为,设周期因为函数须满足“图象关于点对称,且在处取得最小值”因此,根据三角函数的图象特征可以知道,,故有,∴,,又因为,形如的函数的图象的对称中心都是的零点,故需满足,而当,时,因为,;所以当且仅当,时,的图象关于点对称;此时,,∴,(i)当,时,,进一步要使处取得最小值,则有,∴,故,又,则有,,因此,由可得,(ii)当时,,进一步要使处取得最小值,则有;又,则有,因此,由,可得,综上,使得函数满足“图象关于点对称,且在处取得最小值的充要条件”是“,时,,;或当时,,”点睛:本题主要考查公式三角函数的图像和性质以及辅助角公式的应用,属于难题.利用该公式()可以求出:①的周期;②单调区间(利用正弦函数的单调区间可通过解不等式求得);③值域();④对称轴及对称中心(由可得对称轴方程,由可得对称中心横坐标.18、(1)见解析;(2).【解析】(1)直接利用诱导公式化简即可;(2)由求出,代入即可求解.【详解】(1)(2)因为为第二象限角,且,所以,所以.19、(1);(2)或.【解析】(1)根据幂函数的概念,以及幂函数单调性,求出,即可得出解析式;(2)根据函数单调性,将不等式化为,求解,即可得出结果.【详解】(1)因为是幂函数,所以,解得或,又是增函数,即,,则;(2)因为为增函数,所以由可得,解得或的取值范围是或.20、(1)(2)【解析】(1)根据指数运算法则、对数运算法则求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论