版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌二中、九江一中、新余一中、临川一中八所重点中学2026届数学高二上期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线被椭圆截得的弦长是A. B.C. D.2.已知,则()A. B.C. D.3.直线的倾斜角的取值范围是()A. B.C. D.4.已知F是椭圆C的一个焦点,B是短轴的一个端点,直线BF与椭圆C的另一个交点为D,且,则C的离心率为()A. B.C. D.5.如图所示,直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()A. B.C. D.6.已知随机变量服从正态分布,且,则()A.0.1 B.0.2C.0.3 D.0.47.在等差数列中,,,则公差A.1 B.2C.3 D.48.已知抛物线C:,焦点为F,点到在抛物线上,则()A.3 B.2C. D.9.已知,为双曲线的左,右顶点,点P在双曲线C上,为等腰三角形,且顶角为,则双曲线C的离心率为()A. B.C.2 D.10.“”是“函数在上有极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知空间向量,,则()A. B.19C.17 D.12.瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点,其欧拉线方程为,则顶点C的坐标是()A.() B.()C.() D.()二、填空题:本题共4小题,每小题5分,共20分。13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件.为检验产品的质量,现用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取___________件14.命题,恒成立是假命题,则实数a取值范围是________________15.已知数列满足,且,则______,数列的通项_____16.对某市“四城同创”活动中100名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为的数据不慎丢失,则依据此图可估计该市“四城同创”活动中志愿者年龄在的人数为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)同时抛掷两颗骰子,观察向上点数.(1)试表示“出现两个1点”这个事件相应的样本空间的子集;(2)求出现两个1点”的概率;(3)求“点数之和为7”的概率.18.(12分)如图,抛物线的顶点在原点,圆的圆心恰是抛物线的焦点.(1)求抛物线的方程;(2)一条直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于、、、四点,求的值.19.(12分)已知椭圆经过点,椭圆E的一个焦点为(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于A,B两点.求的最大值20.(12分)已知抛物线C:经过点.(1)求抛物线C的方程及其准线方程;(2)经过抛物线C的焦点F的直线l与抛物线交于两点M,N,且与抛物线的准线交于点Q.若,求直线l的方程.21.(12分)证明:是无理数.(我们知道任意一个有理数都可以写成形如(m,n互质,)的形式)22.(10分)已知椭圆的离心率为,左、右焦点分别为,,过的直线交椭圆E于A,B两点.当轴时,(1)求椭圆E的方程;(2)求的范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】直线y=x+1代入,得出关于x的二次方程,求出交点坐标,即可求出弦长【详解】将直线y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直线y=x+1被椭圆x2+4y2=8截得的弦长为故选A【点睛】本题查直线与椭圆的位置关系,考查弦长的计算,属于基础题2、C【解析】取中间值,化成同底利用单调性比较可得.【详解】,,,故,故选:C3、A【解析】由直线方程求得直线斜率的范围,再由斜率等于倾斜角的正切值可得直线的倾斜角的取值范围.【详解】∵直线的斜率,,设直线的倾斜角为,则,解得.故选:A.4、A【解析】设,根据得,代入椭圆方程即可求得离心率.【详解】设椭圆方程,所以,设,所以,所以,在椭圆上,所以,.故选:A5、A【解析】取的中点为,的中点为,然后可得或其补角即为与所成角,然后在中求出答案即可.【详解】取的中点为,的中点为,,,所以或其补角即为与所成角,设,则,,在,,故选:A6、A【解析】利用正态分布的对称性和概率的性质即可【详解】由,且则有:根据正态分布的对称性可知:故选:A7、B【解析】由,将转化为表示,结合,即可求解.【详解】,.故选:B.【点睛】本题考查等差数列基本量的计算,属于基础题.8、D【解析】利用抛物线的定义求解.【详解】因为点在抛物线上,,解得,利用抛物线的定义知故选:D9、A【解析】根据给定条件求出点P的坐标,再代入双曲线方程计算作答.【详解】由双曲线对称性不妨令点P在第一象限,过P作轴于B,如图,因为等腰三角形,且顶角为,则有,,有,于是得,即点,因此,,解得,所以双曲线C的离心率为.故选:A10、B【解析】对求导,取得函数在上有极值的等价条件,再根据充分条件和必要条件的定义进行判断即可【详解】解:,则,令,可得,当时,,当时,,即在上单调递减,在上单调递增,所以,函数在处取得极小值,若函数在上有极值,则,,因为,但是由推不出,因此是函数在上有极值的必要不充分条件故选:B11、D【解析】先求出的坐标,再求出其模【详解】因为,,所以,故,故选:D.12、A【解析】根据题意,求得的外心,再根据外心的性质,以及重心的坐标,联立方程组,即可求得结果.【详解】因为,故的斜率,又的中点坐标为,故的垂直平分线的方程为,即,故△的外心坐标即为与的交点,即,不妨设点,则,即;又△的重心的坐标为,其满足,即,也即,将其代入,可得,,解得或,对应或,即或,因为与点重合,故舍去.故点的坐标为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据分层抽样的方法,即可求解.【详解】由题意,甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件,用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取个数为件.故答案为:.14、【解析】由命题为假命题可得命题为真命题,由此可求a范围.【详解】∵命题,恒成立是假命题,∴,,∴,,又函数在为减函数,∴,∴,∴实数a的取值范围是,故答案为:.15、①.②.【解析】判断出是等差数列,由此求得,利用累加法求得.【详解】依题意,则,所以数列是以为首项,公差为的等差数列,所以,,当时,,,也符合上式,所以.故答案为:;16、【解析】首先根据频率分布直方图计算出年龄在的频率,从而可计算出年龄在的人数.【详解】年龄在的频率为,所以年龄在的人数为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)由题意直接写出基本事件即可得出答案.(2)样本空间一共有个基本事件,由(1)可得答案.(3)列出“点数之和为7”的基本事件,从而可得答案.【小问1详解】“同时抛掷两颗骰子”的样本空间是{1,2,…,6;1,2,…,6},其中i、j分别是抛掷第一颗与第二颗骰子所得的点数.将“出现两个1点”这个事件用A表示,则事件A就是子集.【小问2详解】样本空间一共有个基本事件,它们是等可能的,从而“出现两个1点”的概率为.小问3详解】将“点数之和为7”这个事件用B表示,则{,,,,,},事件B共有6个基本事件,从而“点数之和为7”的概率为.18、(1)圆的圆心坐标为,即抛物线的焦点为,……3分∴∴抛物线方程为……6分
由题意知直线AD的方程为…7分即代入得=0设,则,……11分∴【解析】(1)设抛物线方程为,由题意求出其焦点坐标,进而可求出结果;(2)先由题意得出直线的方程,联立直线与抛物线方程,求出,再由为圆的直径,即可求出结果.【详解】(1)设抛物线方程为,圆的圆心恰是抛物线的焦点,∴.抛物线方程为:;(2)依题意直线的方程为设,,则,得,,.【点睛】本题主要考查抛物线的方程,以及直线与抛物线的位置关系;由抛物线的焦点坐标可直接求出抛物线的方程;联立直线与抛物线方程,结合韦达定理和抛物线定义可求出弦长,进而可求出结果,属于常考题型.19、(1);(2).【解析】(1)利用代入法,结合焦点的坐标、椭圆中的关系进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式、根与系数关系、弦长公式、基本不等式进行求解即可.【小问1详解】依题意:,解得,,∴椭圆E的方程为;【小问2详解】当直线l的斜率存在时,设,,由得由得.由,得当且仅当,即时等号成立当直线l的斜率不存在时,,∴的最大值为20、(1)抛物线C的方程为,准线方程为(2)或.【解析】(1)将点代入抛物线求出即可得出抛物线方程和准线方程;(2)设出直线方程,与抛物线联立,表示出弦长和即可求出.【小问1详解】将代入可得,解得,所以抛物线C的方程为,准线方程为;【小问2详解】由题得,设直线方程为,,设,联立方程,可得,则,所以,因为直线与准线交于点Q,则,则,因为,所以,解得,所以直线l的方程为或.21、详见解析【解析】利用反证法,即可推得矛盾.【详解】假设有理数,则,则,为整数,的尾数只能是0,1,4,5,6,9,的尾数只能是0,1,4,5,6,9,则的尾数是0,2,8,由得,尾数为0,则的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心血管患者的自我管理能力培养策略
- 心脏移植供体分配的模型可解释性研究
- 心理调适能力在职业倦怠预防中的策略
- 心康长期随访管理策略
- 微针联合干细胞治疗痤疮瘢痕的个体化治疗策略
- 微创神经外科手术中超声刀与激光刀的术后感染预防策略
- 建筑工人重复性劳损预防策略构建
- 建筑工人肌肉骨骼损伤职业关联性分析
- 康复治疗研究摘要海报设计策略
- 康复医学视角下社区慢病运动处方优化策略
- 2025新疆阿瓦提县招聘警务辅助人员120人参考笔试题库及答案解析
- 贵州国企招聘:2025贵州盐业(集团)有限责任公司贵阳分公司招聘考试题库附答案
- 股东会清算协议书
- 2026年湖南工程职业技术学院单招职业倾向性测试题库及完整答案详解1套
- 2025年春国家开放大学《消费者行为学》形考任务1-3+课程实训+案例讨论参考答案
- 第7课 月亮是从哪里来的 教学课件
- 会所软装合同范本
- 单证主管助理客户服务能力提升方案
- 员工的压力与关怀
- 2025年新锅炉工资格考试题库(含标准答案)
- 低碳建筑成本控制方案设计
评论
0/150
提交评论