天津市河西区2026届高二上数学期末达标检测模拟试题含解析_第1页
天津市河西区2026届高二上数学期末达标检测模拟试题含解析_第2页
天津市河西区2026届高二上数学期末达标检测模拟试题含解析_第3页
天津市河西区2026届高二上数学期末达标检测模拟试题含解析_第4页
天津市河西区2026届高二上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市河西区2026届高二上数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列数列中成等差数列的是()A. B.C. D.2.已知平面内有一点,平面的一个法向量为,则下列四个点中在平面内的是()A. B.C. D.3.已知椭圆的左、右焦点分别为,,点P是椭圆上一点且的最大值为,则椭圆离心率为()A. B.C. D.4.已知向量,则()A. B.C. D.5.已知等比数列的公比为,则“是递增数列”的一个充分条件是()A. B.C. D.6.函数y=x3+x2-x+1在区间[-2,1]上的最小值为()A. B.2C.-1 D.-47.已知是双曲线的左、右焦点,点P在C上,,则等于()A.2 B.4C.6 D.88.为了调查修水县2019年高考数学成绩,在高考后对我县6000名考生进行了抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本,这项调查宜采用的抽样方法是()A.系统抽样法 B.分层抽样法C.抽签法 D.简单的随机抽样法9.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A. B.C D.10.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定11.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是()A. B.C. D.12.在下列函数中,求导错误的是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知、均为正实数,且,则的最小值为___________.14.直线l:y=-x+m与曲线有两个公共点,则实数m的取值范围是_______.15.某班学号的学生铅球测试成绩如下表:学号12345678成绩9.17.98.46.95.27.18.08.1可以估计这8名学生铅球测试成绩的第25百分位数为___________.16.若动直线分别与函数和的图像交于A,B两点,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,右焦点F到上顶点的距离为.(1)求椭圆的方程;(2)是否存在过点F且与x轴不垂直的直线与椭圆交于A、B两点,使得点C()在线段AB的中垂线上?若存在,求出直线l:若不存在,说明理曲.18.(12分)在①,;②,,③,这三个条件中任选一个,补充在下面问题中并解决问题问题:设等差数列的前项和为,________________,若,判断是否存在最大值,若存在,求出取最大值时的值;若不存在,说明理由注:如果选择多个条件分别解答.按第一个解答记分19.(12分)已知是公比不为1的等比数列,,且为的等差中项.(1)求的公比;(2)求的通项公式及前n项和.20.(12分)已知函数.(1)当时,求的最大值和最小值;(2)说明的图象由函数的图象经过怎样的变换得到?21.(12分)在平面直角坐标系xOy中,抛物线:,点,过点的直线l与抛物线交于A,B两点:当l与抛物线的对称轴垂直时,(1)求抛物线的标准方程;(2)若点A在第一象限,记的面积为,的面积为,求的最小值22.(10分)已知函数(m≥0).(1)当m=0时,求曲线在点(1,f(1))处的切线方程;(2)若函数的最小值为,求实数m的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用等差数列定义,逐一验证各个选项即可判断作答.【详解】对于A,,A不是等差数列;对于B,,B不是等差数列;对于C,,C是等差数列;对于D,,D不是等差数列.故选:C2、A【解析】设所求点的坐标为,由,逐一验证选项即可【详解】设所求点的坐标为,则,因为平面的一个法向量为,所以,,对于选项A,,对于选项B,,对于选项C,,对于选项D,故选:A3、A【解析】根据椭圆的定义可得,从而得到,则,其中,再根据对勾函数的性质求出,即可得到方程,从求出椭圆的离心率;【详解】解:依题意,所以,又,所以,因为在上单调递减,所以当时函数取得最大值,即,即所以,即,所以,解得或(舍去)故选:A4、B【解析】根据向量加减法运算的坐标表示即可得到结果【详解】故选:B.5、D【解析】由等比数列满足递增数列,可进行和两项关系的比较,从而确定和的大小关系.【详解】由等比数列是递增数列,若,则,得;若,则,得;所以等比数列是递增数列,或,;故等比数列是递增数列是递增数列的一个充分条件为,.故选:D.6、C【解析】详解】,令,解得或;令,解得函数在上递增,在递减,在递增,时,取极大值,极大值是时,函数取极小值,极小值是,而时,时,,故函数的最小值为,故选C.7、D【解析】根据双曲线定义写出,两边平方代入焦点三角形的余弦定理中即可求解【详解】双曲线,,所以,根据双曲线的对称性,可假设在第一象限,设,则,所以,,在中,根据余弦定理:,即,解得:,所以故选:D8、B【解析】考生分为几个不同的类型或层次,由此可以确定抽样方法;【详解】6000名考生进行抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本又文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好故选:B.【点睛】本题主要考查的是分层抽样,掌握分层抽样的有关知识是解题的关键,属于基础题.9、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线的距离为,所以面积的最小值为,最大值为.故选:A10、A【解析】∵且,∴,又,∴,故选A.11、B【解析】设该弦所在直线与椭圆的两个交点分别为,,则,利用点差法可得答案.【详解】设该弦所在直线与椭圆的两个交点分别为,,则因为,两式相减可得,,即由中点公式可得,所以,即,所以AB所在直线方程为,即故选:B12、B【解析】分别求得每个函数的导数即可判断.详解】;;;.故求导错误的是B.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由基本不等式可得出关于的不等式,即可解得的最小值.【详解】因、均为正实数,由基本不等式可得,整理可得,,,则,解得,当且仅当时,即当时,等号成立,故的最小值为.故答案为:.14、【解析】曲线表示圆的右半圆,结合的几何意义,得出实数m的取值范围.【详解】曲线表示圆的右半圆,当直线与相切时,,即,由表示直线的截距,因为直线l与曲线有两个公共点,由图可知,所以.故答案为:.15、【解析】利用百分位数的计算方法即可求解.【详解】将以上数据从小到大排列为,,,,,,,;%,则第25百分位数第项和第项的平均数,即为.故答案为:.16、【解析】利用导数求出与平行的曲线的切线,再利用两点间距离公式进行求解即可.【详解】设曲线的切点为,由,所以曲线的切线的斜率为,直线的斜率为,当切线与平行时,即,即切点为,当直线过切点时,有最小值,即,此时,解方程组:,,故答案为:【点睛】关键点睛:利用曲线的切线性质进行求解是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,【解析】(1)由题意可得,,求得的值即可求解;(2)由(1)得,假设存在满足条件的直线:,代入椭圆方程消去可得、,由中点坐标公式可得中点的坐标,由求得的值即可求解.小问1详解】由题意可得,,,解得,,所以椭圆的方程为【小问2详解】由(1)得,假设存在满足条件的直线:,代入椭圆方程整理可得,设,,则,,可得,则线段的中点坐标为,所以,则,解得:,所以存在直线,且直线的方程为18、答案不唯一,具体见解析【解析】选①:易得,法一:令求n,即可为何值时取最大值;法二:写出,利用等差数列前n项和的函数性质判断为何值时有最大值;选②:由数列前n项和及等差数列下标和的性质易得、即可确定有最大值时值;选③:由等差数列前n项和公式易得、即可确定有最大值时值;【详解】选①:设数列的公差为,,,解得,即,法一:当时,有,得,∴当时,;,;时,,∴或时,取最大值法二:,对称轴,∴或时,取最大值选②:由,得,由等差中项的性质有,即,由,得,∴,故,∴当时,,时,,故时,取最大值选③:由,得,可得,由,得,可得,∴,故,∴当时,,时,,故时,取最大值【点睛】关键点点睛:根据所选的条件,结合等差数列前n项和公式的性质、下标和相等的性质等确定数列中项的正负性,找到界点n值即可.19、(1)(2),【解析】(1)设数列公比为,根据列出方程,即可求解;(2):由(1)得到,利用等比数列的求和公式,即可求解.【小问1详解】解:设数列公比为,因为为的等差中项,可得,即,即,解得或(舍去),所以等比数列的公比为.【小问2详解】解:由(1)知且,可得,所以.20、(1)2,;(2)答案见解析.【解析】(1)根据,求出范围,再根据正弦函数的图像即可求值域;(2)根据正弦函数图像变换对解析式的影响即可求解.【小问1详解】当时,有,可得,故,则的最大值为2,最小值为.【小问2详解】先将函数的图象向右平移个单位长度,得到函数的图象;然后把所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到函数的图象;最后把所得图象上各点的横坐标不变,纵坐标伸长为原来的2倍,这时得到的就是函数的图象.21、(1).(2)8.【解析】(1)将点代入抛物线方程可解得基本量.(2)设直线AB为,代入联立得关于的一元二次方程,运用韦达定理,得到关于的函数关系,再求函数最值.【小问1详解】当l与抛物线的对称轴垂直时,,,则代入抛物线方程得,所以抛物线方程是【小问2详解】设点,,直线AB方程为,联立抛物线整理得:,,∴,,有,由A在第一象限,则,即,∴,可得,又O到AB的距离,∴,而,∴,,当,,单调递减;,,单调递增

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论