山东省滨州市北镇中学2026届数学高二上期末学业水平测试试题含解析_第1页
山东省滨州市北镇中学2026届数学高二上期末学业水平测试试题含解析_第2页
山东省滨州市北镇中学2026届数学高二上期末学业水平测试试题含解析_第3页
山东省滨州市北镇中学2026届数学高二上期末学业水平测试试题含解析_第4页
山东省滨州市北镇中学2026届数学高二上期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省滨州市北镇中学2026届数学高二上期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题,,则A., B.,C., D.,2.抛物线的焦点到准线的距离是A. B.1C. D.3.在正三棱锥S-ABC中,AB=4,D、E分别是SA、AB中点,且DE⊥CD,则三棱锥S-ABC外接球的体积为()A.π B.πC.π D.π4.若函数在区间内存在单调递增区间,则实数的取值范围是()A. B.C. D.5.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.376.在直三棱柱中,,M,N分别是,的中点,,则AN与BM所成角的余弦值为()A. B.C. D.7.数列中,,,.当时,则n等于()A.2016 B.2017C.2018 D.20198.已知锐角的内角A,B,C的对边分别为a,b,c,若向量,,,则的最小值为()A. B.C. D.9.已知函数,则()A.函数在上单调递增B.函数上有两个零点C.函数有极大值16D.函数有最小值10.若直线与互相垂直,则实数a的值为()A.-3 B.C. D.311.在四棱锥中,底面是正方形,为的中点,若,则()A. B.C. D.12.已知点,是椭圆:的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,且,则的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若椭圆:的长轴长为4,焦距为2,则椭圆的标准方程为______.14.已知实数x,y满足约束条件,则的最小值为______.15.抛物线的准线方程是___________.16.设函数的导函数为,已知函数,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,椭圆C的左,右焦点分别为F1(﹣,0),F2(,0),且椭圆C过点(﹣).(1)求椭圆C的标准方程;(2)设过(0,﹣2)的直线l与椭圆C交于M,N两点,O为坐标原点,若,求直线l的方程.18.(12分)已知椭圆的短轴长是2,且离心率为(1)求椭圆E的方程;(2)已知,若直线与椭圆E相交于A,B两点,线段AB的中点为M,是否存在常数,使恒成立,并说明理由19.(12分)某小学调查学生跳绳的情况,在五年级随机抽取了100名学生进行测试,得到频率分布直方图如下,且规定积分规则如下表:每分钟跳绳个数得分17181920(1)求频率分布直方图中,跳绳个数在区间的小矩形的高;(2)依据频率分布直方图,把第40百分位数划为合格线,低于合格分数线的学生需补考,试确定本次测试的合格分数线;(3)依据积分规则,求100名学生的平均得分.20.(12分)已知一张纸上画有半径为4圆O,在圆O内有一个定点A,且,折叠纸片,使圆上某一点刚好与A点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C.(1)求曲线C的焦点在轴上的标准方程;(2)过曲线C的右焦点(左焦点为)的直线l与曲线C交于不同的两点M,N,记的面积为S,试求S的取值范围.21.(12分)设函数(1)求在处的切线方程;(2)求在上的最大值与最小值22.(10分)已知:(常数);:代数式有意义(1)若,求使“”为真命题的实数的取值范围;(2)若是成立的充分不必要条件,求实数的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据全称命题与特称命题互为否定的关系,即可求解,得到答案【详解】由题意,根据全称命题与特称命题的关系,可得命题,,则,,故选A【点睛】本题主要考查了含有一个量词的否定,其中解答中熟记全称命题与特称性命题的关系是解答的关键,着重考查了推理与运算能力,属于基础题2、D【解析】,,所以抛物线的焦点到其准线的距离是,故选D.3、C【解析】取中点,连接,证明平面,得证,然后证明平面,得两两垂直,以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由此计算可得【详解】取中点,连接,则,,,平面,所以平面,又平面,所以,D、E分别是SA、AB的中点,则,又,所以,,平面,所以平面,而平面,所以,,是正三棱锥,因此,因此可以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由,得,所以所求外接球直径为,半径为,球体积为故选:C4、D【解析】求出函数的导数,问题转化为在有解,进而求函数的最值,即可求出的范围.【详解】∵,∴,若在区间内存在单调递增区间,则有解,故,令,则在单调递增,,故.故选:D.5、C【解析】直接按照等差数列项数性质求解即可.【详解】数列的前6项之和为.故选:C.6、D【解析】构建空间直角坐标系,根据已知条件求AN与BM对应的方向向量,应用空间向量夹角的坐标表示求AN与BM所成角的余弦值.【详解】建立如下图所示的空间直角坐标系,∴,,,,∴,,∴,所以AN与BM所成角的余弦值为.故选:D7、B【解析】根据已知条件用逐差法求得的通项公式,再根据裂项求和法求得,代值计算即可.【详解】因为,,则,即,则,故,又,即,解得.故选:B.8、C【解析】由,得到,根据正弦、余弦定理定理化简得到,化简得到,再结合基本不等式,即可求解.【详解】由题意,向量,,因为,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因为,所以,由,所以,因为是锐角三角形,且,可得,解得,所以,所以,当且仅当,即时等号成立,故的最小值为.故选:C9、C【解析】对求导,研究的单调性以及极值,再结合选项即可得到答案.【详解】,由,得或,由,得,所以在上递增,在上递减,在上递增,所以极大值为,极小值为,所以有3个零点,且无最小值.故选:C10、C【解析】根据给定条件利用两条直线互相垂直的关系列式计算作答.【详解】因直线与互相垂直,则,解得,所以实数a的值为.故选:C11、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.12、D【解析】设,先求出点,得,化简即得解【详解】由题意可知椭圆的焦点在轴上,如图所示,设,则,∵为等腰三角形,且,∴.过作垂直轴于点,则,∴,,即点.∵点在过点且斜率为的直线上,∴,解得,∴.故选:D【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(求出椭圆的代入离心率的公式即得解);(2)方程法(通过已知找到关于离心率的方程解方程即得解).二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由焦距可得c,长轴长得到a,再根据可得答案.【详解】因为椭圆的长轴长为4,则,焦距为2,由,得,则椭圆的标准方程为:.故答案为:.14、【解析】作出该不等式表示的平面区域,由的几何意义结合距离公式得出答案.【详解】该不等式组表示的平面区域,如下图所示过点作直线的垂线,垂足为因为表示原点与可行域中点之间的距离,所以的最小值为.故答案为:15、【解析】先根据抛物线方程求出,进而求出准线方程.【详解】抛物线为,则,解得:,准线方程为:.故答案为:16、【解析】首先求出函数的导函数,再令代入计算可得;【详解】解:因为,所以,所以,解得;故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解析】(1)设标准方程代入点的坐标,解方程组得解.(2)设直线方程代入椭圆方程消元,韦达定理整体思想,可得直线斜率得解.【小问1详解】因为椭圆C的焦点为,可设椭圆C的方程为,又点在椭圆C上,所以,解得,因此,椭圆C的方程为;【小问2详解】当直线的斜率不存在时,显然不满足题意;当直线的斜率存在时,设直线的方程为,设,,因为,所以,因为,,所以,所以,①联立方程,消去得,则,代入①,得,解得,经检验,此时直线与椭圆相交,所以直线l的方程是或.18、(1);(2)存在,理由见解析.【解析】(1)利用离心率,短轴长求出a,b,即可求得椭圆方程.(2)联立直线与椭圆方程,利用韦达定理计算判定,由M为线段AB中点即可确定存在常数推理作答.【小问1详解】因椭圆的短轴长是2,则,而离心率,解得,所以椭圆方程为.【小问2详解】存在常数,使恒成立,

由消去y并整理得:,设,,则,,又,,,则有,而线段AB的中点为M,于是得,并且有所以存在常数,使恒成立.19、(1)(2)(3)分【解析】(1)根据频率之和为列方程来求得跳绳个数在区间的小矩形的高.(2)根据百分位数的计算方法计算出合格分数线.(3)根据平均数的求法求得名学生的平均得分.【小问1详解】设跳绳个数在区间的小矩形的高为,则,解得.【小问2详解】第一组的频率为,第二组的频率为,第三组的频率为,第四组的频率为,第五组的频率为,第六组的频率为,所以第百分位数为.也即合格分数线为.【小问3详解】名学生的平均得分为分.20、(1);(2)﹒【解析】(1)根据题意,作出图像,可得,由此可知M的轨迹C为以O、A为焦点的椭圆;(2)分为l斜率存在和不存在时讨论,斜率存在时,直线方程和椭圆方程联立,用韦达定理表示的面积,根据变量范围可求面积的最大值﹒【小问1详解】以OA中点G坐标原点,OA所在直线为x轴建立平面直角坐标系,如图:∴可知,,设折痕与和分别交于M,N两点,则MN垂直平分,∴,又∵,∴,∴M的轨迹是以O,A为焦点,4为长轴的椭圆.∴M的轨迹方程C为;【小问2详解】设,,则的周长为当轴时,l的方程为,,,当l与x轴不垂直时,设,由得,∵>0,∴,,,令,则,,∵,∴,∴.综上可知,S的取值范围是21、(1)(2),【解析】(1)对函数求导,然后求出,,运用点斜式即可求出切线方程;(2)利用导数研究出函数在区间的单调性,即可求出函数在区间上的最大值与最小值【小问1详解】,,,所以在点处的切线方程为,即.【小问2详解】,因为,所以与同

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论