版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中学生标准学术能力诊断性测试2026届高二上数学期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列的各项均为正数,公比,且满足,则()A.8 B.4C.2 D.12.命题“对任何实数,都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得3.已知正方体中,分别为棱的中点,则直线与所成角的余弦值为()A. B.C. D.4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C. D.5.某中学举行党史学习教育知识竞赛,甲队有、、、、、共名选手其中名男生名女生,按比赛规则,比赛时现场从中随机抽出名选手答题,则至少有名女同学被选中的概率是()A. B.C. D.6.计算复数:()A. B.C. D.7.已知函数,当时,函数在,上均为增函数,则的取值范围是A. B.C. D.8.圆与直线的位置关系是()A.相交 B.相切C.相离 D.不能确定9.焦点在轴的正半轴上,且焦点到准线的距离为的抛物线的标准方程是()A. B.C. D.10.如图,在平行六面体中,底面是边长为的正方形,若,且,则的长为()A. B.C. D.11.某校初一有500名学生,为了培养学生良好的阅读习惯,学校要求他们从四大名著中选一本阅读,其中有200人选《三国演义》,125人选《水浒传》,125人选《西游记》,50人选《红楼梦》,若采用分层抽样的方法随机抽取40名学生分享他们的读后感,则选《西游记》的学生抽取的人数为()A.5 B.10C.12 D.1512.大数学家阿基米德的墓碑上刻有他最引以为豪的数学发现的象征图——球及其外切圆柱(如图).以此纪念阿基米德发现球的体积和表面积,则球的体积和表面积均为其外切圆柱体积和表面积的()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知某地区内猫的寿命超过10岁的概率为0.9,超过12岁的概率为0.6,那么该地区内,一只寿命超过10岁的猫的寿命超过12岁的概率为___________.14.已知正数,满足.若恒成立,则实数的取值范围是______.15.记为等差数列{}的前n项和,若,,则=_________.16.设是数列的前项和,且,,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近年来某村制作的手工艺品在国内外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(ⅰ)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ⅱ)若3位行家中仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关.若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级;若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(ⅲ)若3位行家中有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立(1)求一件手工艺品质量为B级的概率;(2)求81件手工艺品中,质量为C级的手工艺品件数的方差;(3)求10件手工艺品中,质量为D级的手工艺品最有可能是多少件?18.(12分)已知函数在处有极值,且其图象经过点.(1)求的解析式;(2)求在的最值.19.(12分)等差数列的前项和为,数列是等比数列,满足,,,.(1)求数列和的通项公式;(2)令,设数列的前项和为,求.20.(12分)已知过抛物线的焦点F且斜率为1的直线l交C于A,B两点,且(1)求抛物线C的方程;(2)求以C的准线与x轴的交点D为圆心且与直线l相切的圆的方程21.(12分)已知直线经过点,,直线经过点,且.(1)分别求直线,的方程;(2)设直线与直线的交点为,求外接圆的方程.22.(10分)已知圆过点,,且圆心在直线:上.(1)求圆的方程;(2)若从点发出的光线经过轴反射,反射光线刚好经过圆心,求反射光线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据是等比数列,则通项为,然后根据条件可解出,进而求得【详解】由为等比数列,不妨设首项为由,可得:又,则有:则故选:A2、B【解析】可将原命题变成全称命题形式,而全称命题的否定为特称命题,即可选出答案.【详解】命题“对任何实数,都有”,可写成:,使得,此命题为全称命题,故其否定形式为:,使得.故选:B.3、D【解析】以D为原点建立空间直角坐标系,求出E,F,B,D1点的坐标,利用直线夹角的向量求法求解【详解】如图,以D为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选D【点睛】本题主要考查了空间向量的应用及向量夹角的坐标运算,属于基础题4、D【解析】根据抛物线的定义得出当点P在抛物线的顶点时,|PF|取最小值.【详解】根据题意,设抛物线y=2x2上点P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为y=-,∴当点P在抛物线的顶点时,d有最小值,即|PF|min=.故选:D5、D【解析】现场选名选手,共种情况,设,,,四位同学为男同学则没有女同学被选中的情况,共有6种,利用对立事件进行求解,即可得到答案;【详解】现场选名选手,基本事件有:,,,,,,,,,,,,,,共种情况,不妨设,,,四位同学为男同学则没有女同学被选中的情况是:,,,,,共种,则至少有一名女同学被选中的概率为.故选:.6、D【解析】直接利用复数代数形式的乘除运算化简可得结论.【详解】故选:D.7、A【解析】由,函数在上均为增函数,恒成立,,设,则,又设,则满足线性约束条件,画出可行域如图所示,由图象可知在点取最大值为,在点取最小值.则的取值范围是,故答案选A考点:利用导数研究函数的性质,简单的线性规划8、B【解析】用圆心到直线的距离与半径的大小判断【详解】解:圆的圆心到直线的距离,等于圆的半径,所以圆与直线相切,故选:B9、A【解析】直接由焦点位置及焦点到准线的距离写出标准方程即可.【详解】由焦点在轴的正半轴上知抛物线开口向上,又焦点到准线的距离为,故抛物线的标准方程是.故选:A.10、D【解析】由向量线性运算得,利用数量积的定义和运算律可求得,由此可求得.【详解】由题意得:,,且,又,,,,.故选:D.11、B【解析】根据分层抽样的方法,列出方程,即可求解.【详解】根据分层抽样的方法,可得选《西游记》的学生抽取的人数为故选:B.12、C【解析】设球的半径为,则圆柱的底面半径为,高为,分别求出球的体积与表面积,圆柱的体积与表面积,从而得出答案.【详解】设球的半径为,则圆柱的底面半径为,高为所以球的体积为,表面积为.圆柱的体积为:,所以其体积之比为:圆柱的侧面积为:,圆柱的表面积为:所以其表面积之比为:故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据条件概率公式求解即可.【详解】设事件A:猫的寿命超过10岁,事件B:猫的寿命超过12岁.依题意有,,则一只寿命超过10岁猫的寿命超过12岁的概率.故答案为:14、【解析】利用基本不等式性质可得的最小值,由恒成立可得即可求出实数的取值范围.【详解】解:因为正数,满足,所以,当且仅当时,即时取等号因为恒成立,所以,解得.故实数的取值范围是.故答案填:.【点睛】熟练掌握基本不等式的性质和正确转化恒成立问题是解题的关键.15、18【解析】根据等差数列通项和前n项和公式即可得到结果.【详解】设等差数列的公差为,由,得,解得,所以故答案为:1816、【解析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【点睛】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)2件【解析】(1)根据相互独立事件的概率公式计算可得;(2)首先求出一件手工艺品质量为C级的概率,设81件手工艺品中质量为C级的手工艺品是X件,则,再根据二项分布的方差公式计算可得;(3)首先求出一件手工艺品质量为D级的概率,设10件手工艺品中质量为D级的手工艺品是ξ件,则,根据二项分布的概率公式求出的最大值,即可得解;【小问1详解】解:一件手工艺品质量为B级的概率为【小问2详解】解:一件手工艺品质量为C级的概率为,设81件手工艺品中质量为C级的手工艺品是X件,则,所以【小问3详解】解:一件手工艺品质量为D级的概率为,设10件手工艺品中质量为D级的手工艺品是ξ件,则,则,由解得,所以当时,,即,由解得,所以当时,,所以当时,最大,即10件手工艺品中质量为D级的最有可能是2件18、(1)(2),【解析】(1)由与解方程组即可得解;(2)求导后得到函数的单调区间与极值后,比较端点值即可得解.【详解】(1)求导得,处有极值,即,又图象过点,代入可得..(2)由(1)知,令得又,.列表如下:0230+4↘极小值↗1在时,,.【点睛】本题考查了导数的简单应用,属于基础题.19、(1),(2)【解析】(1)根据条件列关于公差与公比的方程组,解方程组可得再根据等差数列与等比数列通项公式得结果(2)根据错误相减法求数列的前项和为,注意作差时项符号的变化以及求和时项数的确定试题解析:(1)设数列的公差为,数列的公比为,则由得解得所以,.(2)由(1)可知,∴①②①—②得:,∴.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20、(1);(2)【解析】(1)首先表示出直线l的方程,再联立直线与抛物线方程,消去,列出韦达定理,再根据焦点弦公式计算可得;(2)由(1)可得,再利用点到直线的距离求出半径,即可求出圆的方程;【详解】解析:(1)由已知得点,∴直线l的方程为,联立去,消去整理得设,,则,,∴抛物线C的方程为(2)由(1)可得,直线l的方程为,∴圆D的半径,∴圆D的方程为【点睛】本题考查抛物线的简单几何性质,属于中档题.21、(1);(2).【解析】(1)根据两点式即可求出直线l1的方程,根据直线垂直的关系即可求l2的方程;(2)先求出C点坐标,通过三角形的长度关系知道三角形是以AC为斜边长的直角三角形,故AC的中点即为外心,AC即为直径.解析:(1)∵直线经过点,,∴,设直线的方程为,∴,∴.(2),即:,∴,的中点为,∴的外接圆的圆心为,半径为,∴外接圆的方程为:.点睛:这个题目考查的是已知两直线位置关系求参的问题,还考查了三角形外接圆的问题.对于三角形为外接圆,圆心就是各个边的中垂线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论