版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省无锡市天一中学高一上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角α的始边与x轴的正半轴重合,顶点在坐标原点,角α终边上的一点P到原点的距离为,若α=,则点P的坐标为()A.(1,) B.(,1)C.() D.(1,1)2.设,且,则的最小值为()A.4 B.C. D.63.一正方体的六个面上用记号笔分别标记了一个字,已知其表面展开图如图所示,则在原正方体中,互为对面的是()A.西与楼,梦与游,红与记B.西与红,楼与游,梦与记C.西与楼,梦与记,红与游D.西与红,楼与记,梦与游4.若,且则与的夹角为()A. B.C. D.5.若,,则()A. B.C. D.6.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13A.-13C.-227.在空间直角坐标系中,一个三棱锥的顶点坐标分别是,,,.则该三棱锥的体积为()A. B.C. D.28.“”是“函数在内单调递增”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要9.已知方程,在区间(-2,0)上的解可用二分法求出,则的取值范围是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]10.已知函数在区间上的值域为,对任意实数都有,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,,则的最小值___________.12.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________13.设集合,,则_________14.已知函数若函数有三个不同的零点,且,则的取值范围是____15.已知正数x,y满足,则的最小值为_________16.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在正方体中,为棱、的三等分点(靠近A点).求证:(1)平面;(2)求证:平面平面.18.已知函数,(1)当时,求的最值;(2)若在区间上是单调函数,求实数a取值范围19.已知函数,函数(1)求函数的值域;(2)若不等式对任意实数恒成立,试求实数的取值范围20.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.已知(1)利用上述结论,证明:的图象关于成中心对称图形;(2)判断的单调性(无需证明),并解关于x的不等式21.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(I)证明:AM⊥PM;(II)求二面角P-AM-D的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设出P点坐标(x,y),利用正弦函数和余弦函数的定义结合的三角函数值求得x,y值得答案【详解】设点P的坐标为(x,y),则由三角函数的定义得即故点P的坐标为(1,1).故选D【点睛】本题考查任意角的三角函数的定义,是基础的计算题2、C【解析】利用基本不等式“1”的代换求目标式的最小值,注意等号成立条件.【详解】由,当且仅当时等号成立.故选:C3、B【解析】将该正方体折叠,即可判断对立面的字.【详解】以红为底,折叠正方体后,即可判断出:西与红,楼与游,梦与记互为对面.故选:B【点睛】本题考查了空间正方体的结构特征,展开图与正方体关系,属于基础题.4、C【解析】因为,设与的夹角为,,则,故选C考点:数量积表示两个向量的夹角5、C【解析】由题可得,从而可求出,即得.【详解】∵所以,又因为,,所以,即,所以,又因为,所以,故选:C6、B【解析】根据终边关于y轴对称可得关系α+β=π+2kπ,k∈Z,再利用诱导公式,即可得答案;【详解】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=∴sin故选:B.【点睛】本题考查角的概念和诱导公式的应用,考查逻辑推理能力、运算求解能力.7、A【解析】由题,在空间直角坐标系中找到对应的点,进而求解即可【详解】由题,如图所示,则,故选:A【点睛】本题考查三棱锥的体积,考查空间直角坐标系的应用8、A【解析】由函数在内单调递增得,进而根据充分,必要条件判断即可.【详解】解:因为函数在内单调递增,所以,因为是的真子集,所以“”是“函数在内单调递增”的充分而不必要条件故选:A9、B【解析】根据零点存在性定理,可得,求解即可.【详解】因为方程在区间(-2,0)上的解可用二分法求出,所以有,解得.故选B【点睛】本题主要考查零点的存在性定理,熟记定理即可,属于基础题型.10、D【解析】根据关于对称,讨论与的关系,结合其区间单调性及对应值域求的范围.【详解】由题设,,易知:关于对称,又恒成立,当时,,则,可得;当时,,则,可得;当,即时,,则,即,可得;当,即时,,则,即,可得;综上,.故选:D.【点睛】关键点点睛:利用分段函数的性质,讨论其对称轴与给定区间的位置关系,结合对应值域及求参数范围.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用“1”的变形,结合基本不等式,求的最小值.【详解】,当且仅当时,即等号成立,,解得:,,所以的最小值是.故答案为:12、【解析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【详解】作出函数的图象,如图:结合图象可得:,故答案为:.13、【解析】根据集合的交集的概念得到.故答案为14、;【解析】作图可知:点睛:利用函数零点情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.15、8【解析】将等式转化为,再解不等式即可求解【详解】由题意,正实数,由(时等号成立),所以,所以,即,解得(舍),,(取最小值)所以的最小值为.故答案为:16、【解析】正方体的对角线等于球的直径.求得正方体的对角线,则球的表面积为考点:球的表面积点评:若长方体的长、宽和高分别为a、b、c,则球的直径等于长方体的对角线三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】(1)欲证:平面,根据直线与平面平行的判定定理可知,只需证与平面内一条直线平行,连接,可知,则,又平面,平面,满足定理所需条件;(2)欲证:平面平面,根据面面垂直的判定定理可知,在平面内一条直线与平面垂直,而平面,平面,则,,满足线面垂直的判定定理则平面,而平面,满足定理所需条件【详解】(1)证明:连接,在正方体中,对角线,又因为、为棱、的三等分点,所以,则,又平面,平面,所以平面(2)因为在正方体中,因为平面,而平面,所以,又因为在正方形中,,而,平面,平面,所以平面,又因为平面,所以平面平面【点睛】本题主要考查线面平行的判定定理和线面垂直的判定定理,以及考查对基础知识的综合应用能力和基本定理的掌握能力18、(1),.(2)【解析】(1)利用二次函数的性质求的最值即可.(2)由区间单调性,结合二次函数的性质:只需保证已知区间在对称轴的一侧,即可求a的取值范围【小问1详解】当时,,∴在上单凋递减,在上单调递增,∴,.【小问2详解】,∴要使在上为单调函数,只需或,解得或∴实数a的取值范围为19、(1)[-4,﹢∞);(2)【解析】(1)将原函数转化为二次函数,根据求二次函数最值的方法求解即可.(2)由题意得,求得,然后通过解对数不等式可得所求范围【详解】(1)由题意得,即的值域为[-4,﹢∞).(2)由不等式对任意实数恒成立得,又,设,则,∴,∴当时,=∴,即,整理得,即,解得,∴实数x的取值范围为【点睛】解答本题时注意一下两点:(1)解决对数型问题时,可通过换元的方法转化为二次函数的问题处理,解题时注意转化思想方法的运用;(2)对于函数恒成立的问题,可根据题意转化成求函数的最值的问题处理,特别是对于双变量的问题,解题时要注意分清谁是主变量,谁是参数20、(1)证明见解析(2)为单调递减函数,不等式的解集见解析.【解析】(1)利用已知条件令,求出的解析式,利用奇函数的定义判断为奇函数,即可得证;(2)由(1)得,原不等式变成,利用函数单调性化为含有参数的一元二次不等式,求解即可.【小问1详解】证明:∵,令,∴,即,又∵,∴为奇函数,有题意可知,的图象关于成中心对称图形;【小问2详解】易知函数为单调递增函数,且对于恒成立,则函数在上为单调递减函数,由(1)知,的图象关于成中心对称图形,即,不等式得:,即,则,整理得,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.21、(1)见解析;(2)45°.【解析】(Ⅰ)以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,求出与的坐标,利用数量积为零,即可证得结果;(Ⅱ)求出平面PAM与平面ABCD的法向量,代入公式即可得到结果.【详解】(I)证明:以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,依题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025KSGO临床实践指南:宫颈癌课件
- 松鼠养殖专业知识培训课件
- 松下安全培训课件
- 高考生物一轮复习-第十一单元-现代生物科技专题-第4讲-生态工程
- 高考英语一轮复习-Module-4-Music讲义-外研版选修
- 杭州安全培训中心简介
- 杨浦安全风险评估报告服务培训课
- 杨庙社区安全培训内容课件
- 杨之子课件教学课件
- 条例逐条解读课件
- 模切管理年终工作总结
- 杉木容器育苗技术规程
- 售后工程师述职报告
- 专题12将军饮马模型(原卷版+解析)
- 粉刷安全晨会(班前会)
- (中职)中职生创新创业能力提升教课件完整版
- 部编版八年级语文上册课外文言文阅读训练5篇()【含答案及译文】
- 高三英语一轮复习人教版(2019)全七册单元写作主题汇 总目录清单
- 路基工程危险源辨识与风险评价清单
- NB-T+10131-2019水电工程水库区工程地质勘察规程
- 大学基础课《大学物理(一)》期末考试试题-含答案
评论
0/150
提交评论