版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届陕西省西安市西北工业大学高一上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数在其定义域上既是奇函数又是减函数的是()A. B.C. D.2.已知函数的值域为,则实数a的取值范围是()A. B.C. D.3.铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过.设携带品外部尺寸长、宽、高分别为(单位:),这个规定用数学关系式表示为()A. B.C. D.4.已知函数,若(其中.),则的最小值为()A. B.C.2 D.45.已知,,则()A. B.C. D.6.关于函数,下列说法正确的是()A.最小值为0 B.函数为奇函数C.函数是周期为周期函数 D.函数在区间上单调递减7.已知角的顶点与平面直角坐标系的原点重合,始边与x轴的正半轴重合,终边经过点,若,则的值为()A. B.C. D.8.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为()A. B.C. D.9.函数的图象大致()A. B.C. D.10.角的终边落在A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为______12.设a>0且a≠1,函数fx13.数据的第50百分位数是__________.14.已知函数的定义域为,当时,,若,则的解集为______15.在平面直角坐标系中,点在单位圆O上,设,且.若,则的值为______________.16.已知函数是定义在上的奇函数,若时,,则时,__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是偶函数(1)求实数的值;(2)若函数的最小值为,求实数的值;(3)当为何值时,讨论关于的方程的根的个数18.已知为定义在上的奇函数,当时,函数解析式为.(1)求的值,并求出在上的解析式;(2)求在上的最值19.已知函数是偶函数(其中为自然对数的底数,…)(1)求的值;(2)若方程在区间上有实数根,求实数的取值范围20.观察以下等式:①②③④⑤(1)对①②③进行化简求值,并猜想出④⑤式子的值;(2)根据上述各式的共同特点,写出一条能反映一般规律的等式,并对等式的正确性作出证明21.设函数(1)求函数的最小正周期和单调递增区间;(2)求函数在上的最大值与最小值及相应的x的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】对于A:由定义法判断出不是奇函数,即可判断;对于B:判断出在R上为增函数,即可判断;对于C:不能说在定义域是减函数,即可判断;对于D:用图像法判断.【详解】对于A:的定义域为R..所以不是奇函数,故A错误;对于B:在R上为增函数.故B错误;对于C:在为减函数,在为减函数,但不能说在定义域是减函数.故C错误;对于D:,作出图像如图所示:所以既是奇函数又是减函数.故D正确.故选:D2、B【解析】令,要使已知函数的值域为,需值域包含,对系数分类讨论,结合二次函数图像,即可求解.【详解】解:∵函数的值域为,令,当时,,不合题意;当时,,此时,满足题意;当时,要使函数的值域为,则函数的值域包含,,解得,综上,实数的取值范围是.故选:B【点睛】关键点点睛:要使函数的值域为,需要作为真数的函数值域必须包含,对系数分类讨论,结合二次函数图像,即可求解.3、C【解析】根据长、宽、高的和不超过可直接得到关系式.【详解】长、宽、高之和不超过,.故选:.4、B【解析】根据二次函数的性质及对数的运算可得,利用均值不等式求最值即可.详解】,由,,即,,当且仅当,即时等号成立,故选:B5、D【解析】由同角三角函数的平方关系计算即可得出结果.【详解】因为,,,,所以.故选:D6、D【解析】根据三角函数的性质,得到的最小值为,可判定A不正确;根据奇偶性的定义和三角函数的奇偶性,可判定C不正确;举例可判定C不正确;根据三角函数的单调性,可判定D正确.【详解】由题意,函数,当时,可得,所以,当时,可得,所以,所以函数的最小值为,所以A不正确;又由,所以函数为偶函数,所以B不正确;因为,,所以,所以不是的周期,所以C不正确;当时,,,当时,,即函数在区间上单调递减,又因为,所以函数在区间上单调递减,所以D正确.故选:D.7、C【解析】根据终边经过点,且,利用三角函数的定义求解.【详解】因为角终边经过点,且,所以,解得,故选:C8、B【解析】根据题意,求得长方体的体对角线,即为该球的直径,再用球的表面积公式即可求得结果.【详解】由已知,该球是长方体的外接球,故,所以长方体的外接球半径,故外接球的表面积为.故选:.【点睛】本题考查长方体的外接球问题,涉及球表面积公式的使用,属综合基础题.9、A【解析】根据对数函数的图象直接得出.【详解】因为,根据对数函数的图象可得A正确.故选:A.10、A【解析】根据角的定义判断即可【详解】,故为第一象限角,故选A【点睛】判断角的象限,将大角转化为一个周期内的角即可二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】根据给定条件把正余弦的齐次式化成正切,再代入计算作答.【详解】因,则,所以的值为2.故答案为:212、1,0【解析】令指数为0即可求得函数图象所过的定点.【详解】由题意,令x-1=0⇒x=1,y=1-1=0,则函数的图象过定点(1,0).故答案为:(1,0).13、16【解析】第50百分位数为数据的中位数,即得.【详解】数据的第50百分位数,即为数据的中位数为.故答案为:16.14、##【解析】构造,可得在上单调递减.由,转化为,利用单调性可得答案【详解】由,得,令,则,又,所以在上单调递减由,得,因为,所以,所以,得故答案为:.15、【解析】由题意,,,只需求出即可.【详解】由题意,,因为,所以,,所以.故答案为:【点睛】本题考查三角恒等变换中的给值求值问题,涉及到三角函数的定义及配角的方法,考查学生的运算求解能力,是一道中档题.16、【解析】函数是定义在上的奇函数,当时,当时,则,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)当时,方程有一个根;当时,方程没有根;当或或时,方程有两个根;当时,方程有三个根;当时,方程有四个根【解析】(1)利用偶函数满足,求出的值;(2)对函数变形后利用二次函数的最值求的值;(3)定义法得到的单调性,方程通过换元后得到的根的情况,通过分类讨论最终求出结果.【小问1详解】由题意得:,即,所以,其中,∴,解得:【小问2详解】,∴,故函数的最小值为,令,故的最小值为,等价于,解得:或,无解综上:【小问3详解】由,令,,有由,有,,可得,可知函数为增函数,故当时,函数单调递增,由函数为偶函数,可知函数的增区间为,减区间为,令,有,方程(记为方程①)可化为,整理为:(记为方程②),,当时,有,此时方程②无解,可得方程①无解;当时,时,方程②的解为,可得方程①仅有一个解为;时,方程②的解为,可得方程①有两个解;当时,可得或,1°当方程②有零根时,,此时方程②还有一根为,可得此时方程①有三个解;2°当方程②有两负根时,可得,不可能;3°当方程②有两正根时,可得:,又由,可得,此时方程①有四个根;4°当方程②有一正根一负根时,,可得:或,又由,可得或,此时方程①有两个根,由上知:当时,方程①有一个根;当时,方程①没有根;当或或时,方程①有两个根;当时,方程①有三个根;当时,方程①有四个根【点睛】对于复合函数根的个数问题,要用换元法来求解,通常方法会用到根的判别式,导函数,基本不等式等.18、(1)在上的解析式为;(2)函数在[0,1]上的最大与最小值分别为0,-2.【解析】(1)根据函数的奇偶性可知,代入即可求值;(2)利用换元得出新的函数,再结合新的函数解析式求最值即可.【详解】(1)为定义在[-1,1]上的奇函数,且在处有意义,即,设,则又,所以,在上的解析式为(2)当,,∴设则当t=1时,取最大值,最大值为1-1=0.当t=0时,取最小值为-2.所以,函数在[0,1]上的最大与最小值分别为0,-2.19、(1);(2)【解析】(1)由偶函数的定义可得恒成立,即可求出值;(2)由题意可分离参数得出有解,求出的值域即可.【详解】(1)是偶函数,恒成立,,解得;(2)由(1)知,由得,令,当时,,则,故时,方程在区间上有实数根,故的取值范围为.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解20、(1)答案见解析;(2);证明见解析.【解析】(1)利用特殊角的三角函数值计算即得;(2)根据式子的特点可得等式,然后利用和差角公式及同角关系式化简运算即得,【小问1详解】猜想:【小问2详解】三角恒等式为证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 62083:2025 FR Medical device software - Requirements for the safety of radiotherapy treatment planning systems
- 2025年高职计算机网络技术(网络安全防护)试题及答案
- 2025年大学运动生理学(肌肉力量训练)试题及答案
- 励志实拍大学生自我介绍开学个人简历
- 工程机械培训课件
- 工程技术类培训课件
- 工程土建类培训课件
- 2026年安全生产隐患排查治理安全培训管理考试题库及答案
- 2026年工程建设领关于开展工程建设领域突出问题专项治理工作
- 成本效益分析与优化策略
- 《软件定义与网络安全》全套教学课件
- 期末模拟测试卷(试卷)2025-2026上学期五年级语文上册(统编版)
- 港澳大桥隧道部分施工方案
- 家具设计方案
- 政府演出申请书范文
- 露天矿山安全隐患排查检查表范例
- DB31T+1545-2025卫生健康数据分类分级要求
- A-Level生物课件教学课件
- 充电桩电量销售合同范本
- 设备售后服务方案(3篇)
- 电厂输煤卫生管理制度
评论
0/150
提交评论