版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州新区一中2026届数学高二上期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,且,那么()A. B.C. D.2.过圆外一点引圆的两条切线,则经过两切点的直线方程是A. B.C. D.3.中国明代商人程大位对文学和数学颇感兴趣,他于60岁时完成杰作《直指算法统宗》.这是一本风行东亚的数学名著,该书A.76石 B.77石C.78石 D.79石4.在的展开式中,的系数为()A. B.5C. D.105.在中,已知角A,B,C所对的边为a,b,c,,,,则()A. B.C. D.16.已知数列为等比数列,若,则的值为()A.-4 B.4C.-2 D.27.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥08.椭圆:的左焦点为,椭圆上的点与关于坐标原点对称,则的值是()A.3 B.4C.6 D.89.在等比数列中,,公比,则()A. B.6C. D.210.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.某摊主2020年4月初向银行借了免息贷款8000元,用于进货,因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费800元,余款作为资金全部用于下月再进货,如此继续,预计到2021年3月底该摊主的年所得收入为()(取,)A.24000元 B.26000元C.30000元 D.32000元11.在平行六面体中,点P在上,若,则()A. B.C. D.12.某校高二年级统计了参加课外兴趣小组的学生人数,每人只参加一类,数据如下表:学科类别文学新闻经济政治人数400300100200若从参加课外兴趣小组的学生中采用分层抽样的方法抽取50名参加学习需求的问卷调查,则从文学、新闻、经济、政治四类兴趣小组中抽取的学生人数分别为()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,10二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若与垂直,则___________.14.已知曲线,则以下结论正确的是______.①曲线C关于点对称;②曲线C关于y轴对称;③曲线C被x轴所截得的弦长为2;④曲线C上的点到原点距离都不超过2.15.若抛物线的焦点与椭圆的右焦点重合,则实数m的值为______.16.已知数列满足,定义使()为整数的k叫做“幸福数”,则区间内所有“幸福数”的和为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为F,直线l交抛物线于不同的A、B两点.(1)若直线l的方程为,求线段AB的长;(2)若直线l经过点P(-1,0),点A关于x轴的对称点为A',求证:A'、F、B三点共线.18.(12分)已知正项等差数列满足,(1)求数列的通项公式;(2)设,求数列的前项和19.(12分)如图1,四边形为直角梯形,,,,,为上一点,为的中点,且,,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面.(2)能否在边上找到一点(端点除外)使平面与平面所成角的余弦值为?若存在,试确定点的位置,若不存在,请说明理由.20.(12分)设椭圆的左、右焦点分别为,.点满足.(1)求椭圆的离心率;(2)设直线与椭圆相交于,两点,若直线与圆相交于,两点,且,求椭圆的方程.21.(12分)已知抛物线C:上一点到焦点F的距离为2(1)求实数p的值;(2)若直线l过C的焦点,与抛物线交于A,B两点,且,求直线l的方程22.(10分)已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由递推公式得到,,,再结合已知即可求解.【详解】解:由,得,,又,那么故选:D2、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选3、C【解析】设出未知数,列出方程组,求出答案.【详解】设甲、乙、丙分得的米数为x+d,x,x-d,则,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故选:C4、C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项5、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.6、B【解析】根据,利用等比数列的通项公式求解.【详解】因为,所以,则,解得,所以.故选:B7、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.8、D【解析】令椭圆C的右焦点,由已知条件可得四边形为平行四边形,再利用椭圆定义计算作答.【详解】令椭圆C的右焦点,依题意,线段与互相平分,于是得四边形为平行四边形,因此,而椭圆:的长半轴长,所以.故选:D9、D【解析】利用等比数列的通项公式求解【详解】由等比数列的通项公式得:.故选:D10、D【解析】设,从4月份起每月底用于下月进借货的资金依次记为,由题意得出的递推关系,变形构造出等比数列,由得其通项公式后可得结论【详解】设,从4月份起每月底用于下月进借货的资金依次记为,,、同理可得,所以,而,所以数列是等比数列,公比为,所以,,总利润为故选:D【点睛】思路点睛:本题考查数列的实际应用.解题方法是用数列表示月初进货款,得出递推关系,然后构造等比数列求解11、C【解析】利用空间向量基本定理,结合空间向量加法的法则进行求解即可.【详解】因为,,所以有,因此,故选:C12、D【解析】利用分层抽样的等比例性质求抽取的样本中所含各小组的人数.【详解】根据分层抽样的等比例性质知:文学小组抽取人数为人;新闻小组抽取人数为人;经济小组抽取人数为人;政治小组抽取人数为人;故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据与垂直,可知,根据空间向量的数量积运算可求出的值,结合向量坐标求向量模的求法,即可得出结果.【详解】解:与垂直,,则,解得:,,则,.故答案为:.14、②④【解析】将x换成,将y换成,若方程不变则关于原点对称;将x换成,曲线的方程不变则关于y轴对称;令通过解方程即可求得被x轴所截得的弦长;利用基本不等式即可判断出曲线C上y轴右侧的点到原点距离是否不超过2,根据曲线C关于y轴对称,即可判断出曲线C上的点到原点距离是否都不超过2.【详解】对于①,将x换成,将y换成,方程改变,则曲线C关于点不对称,故①错误;对于②,将x换成,曲线的方程不变,则曲线C关于y轴对称,故②正确;对于③,令得,,解得,即曲线C与x轴的交点为和,则曲线C被x轴所截得的弦长为,故③错误;对于④,当时,,可得,当且仅当时取等号,即,则,即曲线C上y轴右侧的点到原点的距离都不超过2,此曲线关于y轴对称,即曲线C上y轴左侧的点到原点的距离也不超过2,故④正确;故答案为:②④.15、【解析】分别求出椭圆和抛物线的焦点坐标即可出值.【详解】由椭圆方程可知,,,则,即椭圆的右焦点的坐标为,抛物线的焦点坐标为,∵抛物线的焦点与椭圆的右焦点重合,∴,即,故答案为:.16、2036【解析】先用换底公式化简之后,将表示出来,找出满足条件的“幸福数”,然后求和即可.【详解】当时,,所以,若满足正整数,则,即,所以在内的所有“幸福数”的和为:,故答案为:2036.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)8;(2)证明见解析.【解析】(1)联立直线与抛物线方程,应用韦达定理及弦长公式求线段AB的长;(2)设为,联立抛物线由韦达定理可得,,应用两点式判断是否为0即可证结论.【小问1详解】由题设,联立直线与抛物线方程可得,则,,∴,,所以.【小问2详解】由题设,,又直线l经过点P(-1,0),此时直线斜率必存在且不为0,可设为,联立抛物线得:,则,,又,故,而,所以,所以A'、F、B三点共线.18、(1);(2).【解析】(1)设数首项为,公差为,由,,列出方程组,求得,,即可求出数列的通项公式;(2),利用列项相消求和法即可得出答案.【详解】(1)设数首项为,公差为,由题得.解得,,(负值舍去)所以;(2)由(1)得则.19、(1)证明见解析.(2)存在点,为线段中点【解析】(1)根据线面垂直的判定定理和面面垂直的判定定理,即可证得平面平面;(2)以为坐标原点建立如图所示的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【详解】(1)在直角梯形中,作于于,连接,则,,则,,则,在直角中,可得,则,所以,故,且折叠后与位置关系不变.又因为平面平面,且平面平面,所以平面,因为平面,所以平面平面.(2)在中,由,为的中点,可得.又因为平面平面,且平面平面,所以平面,则以为坐标原点建立如图所示的空间直角坐标系,则,,,则,,设平面的法向量为,则,令,可得平面的法向量为,假设存在点使平面与平面所成角的余弦值为,且(),∵,∴,故,又,∴,又由,设平面的法向量为,可得,令得,∴,解得,因此存在点且为线段中点时使平面与平面所成角的余弦值为.本题考查了面面垂直的判定与证明,以及空间角的求解及应用,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20、(1);(2)【解析】(1)由及两点间距离公式可建立等式,消去b,即可求解出,主要两个根的的要舍去;(2)联立直线和椭圆的方程,利用弦长公式求得,再利用几何关系求得,代入,可解得c,从而得到椭圆的方程.【详解】(1)设,,因为,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得椭圆方程为,直线的方程为,A,B两点的坐标满足方程组为,消去y并整理,得,解得:,,得方程组的解和,不妨设:,,所以,于是,圆心到直线的距离为,因为,所以,整理得:,得(舍),或,所以椭圆方程为:.【点睛】关键点点睛:本题考查求椭圆的离心率解题关键是找到关于a,b,c的等量关系,第二问的关键是联立直线与椭圆方程求出交点坐标,利用距离公式建立等量关系,求出c是求出椭圆方程的关键.21、(1)2(2)或【解析】(1)根据抛物线上的点到焦点与准线的距离相等可得到结果(2)通过联立抛物线与直线方程利用韦达定理求解关系式即可得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 7听听秋的声音 教学课件
- (2025)癌因性厌食诊疗中国专家共识课件
- 拆除施工方案设计与管理
- 数学大数运算教学方案
- 物业费收缴管理工作总结范文
- 湖南省衡阳市二十六中2026届生物高一第一学期期末达标检测模拟试题含解析
- 三年级数学教学计划范本
- 工会审计知识课件
- 语文教学期末测试题分析与讲评
- 人教版一年级语文同步练习题
- 网络谣言的法律规制及其治理策略研究
- 10第十章-水利工程设计
- 第四代住宅白皮书-HZS
- 高中化学教材培训
- 生活老师面试试题及答案
- 新能源发电技术课件:新能源发电的故障穿越技术
- 管线拆除施工方案
- 杉木容器育苗技术规程
- 专题12将军饮马模型(原卷版+解析)
- (中职)中职生创新创业能力提升教课件完整版
- 路基工程危险源辨识与风险评价清单
评论
0/150
提交评论