2026届山东省临沂市罗庄区数学高一上期末监测试题含解析_第1页
2026届山东省临沂市罗庄区数学高一上期末监测试题含解析_第2页
2026届山东省临沂市罗庄区数学高一上期末监测试题含解析_第3页
2026届山东省临沂市罗庄区数学高一上期末监测试题含解析_第4页
2026届山东省临沂市罗庄区数学高一上期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省临沂市罗庄区数学高一上期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则()A. B.aC. D.2.已知角是第四象限角,且满足,则()A. B.C. D.3.已知,则函数与函数的图象可能是()A. B.C. D.4.已知向量,,则向量与的夹角为()A. B.C. D.5.定义在上的函数满足,且,,则不等式的解集为()A. B.C. D.6.若命题:,则命题的否定为()A. B.C. D.7.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%8.三个数,,的大小顺序是A. B.C. D.9.已知函数,则函数在上单调递增,是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件10.已知函数,若,则函数的单调递减区间是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为__________12.已知函数,若,则实数的取值范围为______.13.在平面直角坐标系中,已知点A在单位圆上且位于第三象限,点A的纵坐标为,现将点A沿单位圆逆时针运动到点B,所经过的弧长为,则点B的坐标为___________.14.已知角的顶点为坐标原点,始边为轴的正半轴,终边经过点,则___________.15.如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.16.函数为奇函数,且对任意互不相等的,,都有成立,且,则的解集为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示,且在处取得最大值,图象与轴交于点(1)求函数的解析式;(2)若,且,求值18.设二次函数在区间上的最大值、最小值分别是M、m,集合若,且,求M和m的值;若,且,记,求的最小值19.已知函数.(1)求函数振幅、最小正周期、初相;(2)用“五点法”画出函数在上的图象20.为了考查甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:甲12131415101613111511乙111617141319681016哪种小麦长得比较整齐?21.已知函数是定义在1,1上的奇函数,且.(1)求m,n的值;(2)判断在1,1上的单调性,并用定义证明;(3)设,若对任意的,总存在,使得成立,求实数k的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由求出的值,再由诱导公式可求出答案【详解】因为,所以,所以,故选:C2、A【解析】直接利用三角函数的诱导公式以及同角三角函数基本关系式化简求解即可【详解】由,得,即,∵角是第四象限角,∴,∴故选:A3、B【解析】条件化为,然后由的图象确定范围,再确定是否相符【详解】,即.∵函数为指数函数且的定义域为,函数为对数函数且的定义域为,A中,没有函数的定义域为,∴A错误;B中,由图象知指数函数单调递增,即,单调递增,即,可能为1,∴B正确;C中,由图象知指数函数单调递减,即,单调递增,即,不可能为1,∴C错误;D中,由图象知指数函数单调递增,即,单调递减,即,不可能为1,∴D错误故选:B.【点睛】本题考查指数函数与对数函数的图象与性质,确定这两个的图象与性质是解题关键.4、C【解析】结合平面向量线性运算的坐标表示求出,然后代入模长公式分别求出和,进而根据平面向量的夹角公式即可求出夹角的余弦值,进而求出结果.【详解】,,,,从而,且,记与的夹角为,则又,,故选:5、B【解析】对变形得到,构造新函数,得到在上单调递减,再对变形为,结合,得到,根据的单调性,得到解集.【详解】,不妨设,故,即,令,则,故在上单调递减,,不等式两边同除以得:,因为,所以,即,根据在上单调递减,故,综上:故选:B6、D【解析】根据存在量词的否定是全称量词可得结果.【详解】根据存在量词的否定是全称量词可得命题的否定为.故选:D7、B【解析】根据所给公式、及对数的运算法则代入计算可得;【详解】解:当时,,当时,,∴,∴约增加了30%.故选:B8、A【解析】由指数函数和对数函数单调性得出范围,从而得出结果【详解】,,;故选A【点睛】本题考查指数函数和对数函数的单调性,熟记函数性质是解题的关键,是基础题.9、A【解析】根据充分、必要条件的定义证明即可.【详解】因为函数在上单调递增,则,恒成立,即恒成立,,即.所以“”是“”的充分不必要条件.故选:A.10、D【解析】由判断取值范围,再由复合函数单调性的原则求得函数的单调递减区间【详解】,所以,则为单调增函数,又因为在上单调递减,在上单调递增,所以的单调减区间为,选择D【点睛】复合函数的单调性判断遵循“同增异减”的原则,所以需先判断构成复合函数的两个函数的单调性,再判断原函数的单调性二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】答案:12、或【解析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.13、【解析】设点A是角终边与单位圆的交点,根据三角函数的定义及平方关系求出,,再利用诱导公式求出,即可得出答案.【详解】解:设点A是角的终边与单位圆的交点,因为点A在单位圆上且位于第三象限,点A的纵坐标为,所以,,因为点A沿单位圆逆时针运动到点B,所经过的弧长为,所以,所以点的横坐标为,纵坐标为,即点B的坐标为.故答案为:.14、【解析】利用三角函数定义求出、的值,结合诱导公式可求得所求代数式的值.【详解】由三角函数的定义可得,,因此,.故答案为:.15、①.②.【解析】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,设点、,根据锐角三角函数的定义可得出点、的坐标,然后利用平面向量数量积的坐标运算和二倍角的正弦公式可求出的取值范围.【详解】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,如下图所示:则,设点、,则,,,.当时,,,则点;由上可知,,,则,因此,的取值范围是.故答案为:;.【点睛】本题考查点的坐标的计算,同时也考查了平面向量数量积的取值范围的求解,解题的关键就是将点的坐标利用三角函数表示,考查运算求解能力,属于中等题.16、【解析】由条件可得函数的单调性,结合,分和利用单调性可解.【详解】因为,时,,所以在上单调递减,又因为为奇函数,且,所以在上单调递减,且.当时,不等式,得;当时,不等式,得.综上,不等式的解集为.故答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据图象可得函数的周期,从而求得,结合函数在处取得最大值,可求得的值,再根据图象与轴交于点,可求得,从而可得解;(2)根据(1)及角的范围求得,,再利用两角差的余弦公式进行化简可求解.【小问1详解】由图象可知函数的周期为,所以.又因为函数在处取得最大值所以,所以,因为,所以,故.又因为,所以,所以.【小问2详解】由(1)有,因为,则,由于,从而,因此.所以.18、(Ⅰ),;(Ⅱ).【解析】(1)由……………1分又…3分…………4分……………5分……………6分(2)x=1∴,即……………8分∴f(x)=ax2+(1-2a)x+a,x∈[-2,2]其对称轴方程为x=又a≥1,故1-……………9分∴M=f(-2)="9a-2"…………10分m=……………11分g(a)=M+m=9a--1……………14分=………16分19、(1)振幅为,最小正周期为,初相为;(2)答案见解析.【解析】(1)首先利用三角恒等变换把三角函数的关系式变形为正弦型函数,利用关系式即求;(2)利用整体思想,使用“五点法”,采用列表、描点、连线画出函数的图像.【小问1详解】∵,∴振幅为,最小正周期为,初相为;【小问2详解】列表0x011+10故函数在上的图像如下图所示:20、乙种小麦长得比较整齐.【解析】根据题意,要比较甲、乙两种小麦的长势更整齐,需比较它们的方差,先求出其平均数,再根据方差的计算方法计算方差,进行比较可得结论试题解析:由题中条件可得:,,,,∵,∴乙种小麦长得比较整齐.点睛:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小,方差或标准差越小,则数据分布波动较小,相对比较稳定21、(1),(2)在上递增,证明见解析(3)【解析】(1)由为1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论