版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市前黄中学溧阳中学2026届数学高二上期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若圆上至少有三个点到直线的距离为1,则半径的取值范围是()A. B.C. D.2.已知复数满足(其中为虚数单位),则复数的虚部为()A. B.C. D.3.已知不等式只有一个整数解,则m的取值范围是()A. B.C. D.4.在数列中,,则()A. B.C.2 D.15.已知等比数列的各项均为正数,且,则()A. B.C. D.6.已知椭圆的左、右焦点分别为,点是椭圆上的一点,点是线段的中点,为坐标原点,若,则()A.3 B.4C.6 D.117.双曲线C:的渐近线方程为()A. B.C. D.8.如图,正三棱柱中,,则与平面所成角的正弦值等于()A. B.C. D.9.2021年7月,某文学网站对该网站的数字媒体内容能否满足读者需要进行了调查,调查部门随机抽取了名读者,所得情况统计如下表所示:满意程度学生族上班族退休族满意一般不满意记满分为分,一般为分,不满意为分.设命题:按分层抽样方式从不满意的读者中抽取人,则退休族应抽取人;命题:样本中上班族对数字媒体内容满意程度的方差为.则下列命题中为真命题的是()A. B.C. D.10.一组样本数据:,,,,,由最小二乘法求得线性回归方程为,若,则实数m的值为()A.5 B.6C.7 D.811.已知是等差数列的前项和,,,则的最小值为()A. B.C. D.12.已知随机变量服从正态分布,且,则()A.0.16 B.0.32C.0.68 D.0.84二、填空题:本题共4小题,每小题5分,共20分。13.若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,现将数列进行构造,第次得到数列;第次得到数列;依次构造,第次得到数列;记,则(1)___________,(2)___________14.已知定点,,P是椭圆上的动点,则的的最小值为______.15.盒子中放有大小和质地相同的2个白球、1个黑球,从中随机摸取2个球,恰好都是白球的概率为___________.16.数据6,8,9,10,7的方差为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求下列函数导数:(1);(2);18.(12分)已知向量,,且.(1)求满足上述条件的点M(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m(k≠0)相交于不同的两点P,Q,点A(0,1),当|AP|=|AQ|时,求实数m的取值范围.19.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3,直线与抛物线交于,两点,为坐标原点(1)求抛物线的方程;(2)求的面积.20.(12分)已知数列为等差数列,是公比为2的等比数列,且满足(1)求数列和的通项公式;(2)令求数列的前n项和;21.(12分)如图①,等腰梯形中,,分别为的中点,,现将四边形沿折起,使平面平面,得到如图②所示的多面体,在图②中:(1)证明:平面平面;(2)求四棱锥的体积.22.(10分)已知圆的圆心为,且圆经过点(1)求圆的标准方程;(2)若圆:与圆恰有两条公切线,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先求出圆心到直线的距离为,由此可知当圆的半径为时,圆上恰有三点到直线的距离为,当圆的半径时,圆上恰有四个点到直线的距离为,故半径的取值范围是,即可求出答案.【详解】由已知条件得的圆心坐标为,圆心到直线为,∵圆上至少有三个点到直线的距离为1,∴圆的半径的取值范围是,即,即半径的取值范围是.故选:.2、A【解析】由题目条件可得,即,然后利用复数的运算法则化简.【详解】因为,所以,则故复数的虚部为.故选:A.【点睛】本题考查复数的相关概念及复数的乘除运算,按照复数的运算法则化简计算即可,较简单.3、B【解析】依据导函数得到函数的单调性,数形结合去求解即可解决.【详解】不等式只有一个整数解,可化为只有一个整数解令,则当时,,单调递增;当时,,单调递减,则当时,取最大值,当时,恒成立,的草图如下:,,则若只有一个整数解,则,即故不等式只有一个整数解,则m的取值范围是故选:B4、A【解析】利用条件可得数列为周期数列,再借助周期性计算得解.【详解】∵∴,,所以数列是以3为周期的周期数列,∴,故选:A.5、B【解析】利用对数的运算性质,结合等比数列的性质可求得结果.【详解】是各项均为正数的等比数列,,,,.故选:B6、A【解析】利用椭圆的定义可得,再结合条件即求.【详解】由椭圆的定义可知,因为,所以,因为点分别是线段,的中点,所以是的中位线,所以.故选:A.7、D【解析】根据给定的双曲线方程直接求出其渐近线方程作答.【详解】双曲线C:的实半轴长,虚半轴长,即有,而双曲线C的焦点在y轴上,所以双曲线C的渐近线的方程为,即.故选:D8、C【解析】取中点,连接,,证明平面,从而可得为与平面所成角,再利用三角函数计算的正弦值.【详解】取中点,连接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴为与平面所成角,由题意,,,在中,.故选:C9、A【解析】由抽样比再乘以可得退休族应抽取人数可判断命题,求出上班族对数字媒体内容满意程度的平均分,由方差公式计算方差可判断,再由复合命题的真假判断四个选项,即可得正确选项.【详解】因为退休族应抽取人,所以命题正确;样本中上班族对数字媒体内容满意程度的平均分为,方差为,命题正确,所以为真,、、为假命题,故选:10、B【解析】求出样本的中心点,再利用回归直线必过样本的中心点计算作答.【详解】依题意,,则这个样本的中心点为,因此,,解得,所以实数m的值为6.故选:B11、C【解析】根据,可得,再根据,得,从而可得出答案.【详解】解:因为,所以,又,所以,所以的最小值为.故选:C.12、C【解析】根据对称性以及概率之和等于1求出,再由即可得出答案.【详解】∵随机变量服从正态分布,∴故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】根据题意得到,再利用叠加法求解即可.【详解】由题知:,,,所以,,,……,,所以,,……,,即,所以.故答案为:;14、##【解析】根据椭圆的定义可知,化简并结合基本不等式可求的的最小值.【详解】由题可知:点,是椭圆的焦点,所以,所以,即,当且仅当时等号成立,即时等号成立.所以的最小值为,故答案为:.15、【解析】根据题意得到,计算得到答案.【详解】根据题意:.故答案为:16、2【解析】首先求出数据的平均值,再应用方差公式求它们的方差.【详解】由题设,平均值为,∴方差.故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】根据基本初等函数的导数公式以及导数的运算法则计算可得;【详解】解:(1)因为所以,即(2)因为所以,即18、(1)+y2=1;(2).【解析】(1)应用向量垂直的坐标表示得x2+3y2=3,即可写出M的轨迹C的方程;(2)由直线与曲线C交于不同的两点P(x1,y1),Q(x2,y2),设直线y=kx+m(k≠0),联立方程整理所得方程有,且由根与系数关系用m,k表示x1+x2,x1x2,若N为PQ的中点结合|AP|=|AQ|知PQ⊥AN可得m、k的等量关系,结合即可求m的范围.【详解】(1)∵,即,∴,即有x2+3y2=3,即点M(x,y)的轨迹C的方程为+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲线C与直线y=kx+m(k≠0)相交于不同的两点,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.设P(x1,y1),Q(x2,y2),线段PQ的中点N(x0,y0),则.∵|AP|=|AQ|,即知PQ⊥AN,设kAN表示直线AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.将②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范围为.【点睛】思路点睛:1、由向量垂直,结合其坐标表示得到关于x,y的方程,写出曲线C的标准方程即可.2、由直线与曲线C相交,联立方程有,由|AP|=|AQ|得直线的垂直关系,即斜率之积为-1,进而可求参数的范围.19、(1);(2)【解析】(1)由题意可设抛物线的方程为y2=2px(p>0),运用抛物线的定义,可得23,解得p=2,进而得到抛物线的方程;(2)由题意,直线AB方程为y=x﹣1,与y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根与系数的关系和弦长公式,算出|AB|;利用点到直线的距离公式算出点O到直线AB的距离,即可求出△AOB的面积【详解】(1)抛物线C的顶点在原点,焦点在x轴上,且过一点P(2,m),可设抛物线的方程为y2=2px(p>0),P(2,m)到焦点的距离为3,即有P到准线的距离为6,即23,解得p=2,即抛物线的标准方程为y2=4x;(2)联立方程化简,得x2﹣6x+1=0设交点为A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8点O到直线l的距离d,所以△AOB的面积为S|AB|•d82【点睛】本题考查抛物线的方程的求法及抛物线定义的应用,考查待定系数法的运用,考查求焦点弦AB与原点构成的△AOB面积,属于中档题20、(1),(2)【解析】(1)根据等差数列和等比数列通项公式得到,根据通项公式的求法得到结果;(2)分组求和即可.【小问1详解】设的公差为,由已知,有解得,所以的通项公式为,的通项公式为.【小问2详解】,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:.21、(1)证明见解析.(2)2【解析】(1)根据面面平行的判定定理结合已知条件即可证明;(2)将所求四棱锥的体积转化为求即可.【小问1详解】证明:因为,面,面,所以面,同理面,又因为面,所以面面.【小问2详解】解:因为在图①等腰梯形中,分别为的中点,所以,在图②多面体中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 19466.4-2025塑料差示扫描量热(DSC)法第4部分:比热容的测定
- 2025年中职服装设计(服装工艺设计)试题及答案
- 工程电气技巧培训课件
- 工程检测安全培训记录课件
- 工程施工现场安全培训课件
- 工程建筑财务培训课件教学
- 成本控制中的成本优化策略
- 成人共同性外斜视的屈光联合策略时机
- 配送合作协议与期限
- 销售合同协议模板参考
- 《水利水电工程专业课程设计期末考试试卷》
- 燃机电厂生产流程
- GB/T 13460-2025再生橡胶通用规范
- 人情世故培训课件
- 商品混凝土实验室操作手册
- 资金调拨拆借管理制度
- 装饰装修工程监理月报
- 超星尔雅学习通《美的历程:美学导论(中国社会科学院)》2025章节测试附答案
- 教学课件-积极心理学(第2版)刘翔平
- 2019人教版高中物理必修第一册《第二章 匀变速直线运动的研究》大单元整体教学设计2020课标
- DGTJ 08-2176-2024 沥青路面预防养护技术标准(正式版含条文说明)
评论
0/150
提交评论