版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省古浪县二中2026届高二数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线内一点,过点的直线交抛物线于,两点,且点为弦的中点,则直线的方程为()A. B.C D.2.已知双曲线左右焦点为,过的直线与双曲线的右支交于,两点,且,若线段的中垂线过点,则双曲线的离心率为()A.3 B.2C. D.3.若直线与曲线只有一个公共点,则m的取值范围是()A. B.C.或 D.或4.已知抛物线的焦点为,为抛物线上一点,为坐标原点,且,则()A.4 B.2C. D.5.已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A. B.C. D.6.在数列中抽取部分项(按原来的顺序)构成一个新数列,记为,再在数列插入适当的项,使它们一起能构成一个首项为1,公比为3的等比数列.若,则数列中第项前(不含)插入的项的和最小为()A.30 B.91C.273 D.8207.已知数列为等差数列,则下列数列一定为等比数列的是()A. B.C. D.8.过点且与原点距离最大的直线方程是()A. B.C. D.9.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.10.已知函数,则()A. B.0C. D.111.若函数在上为增函数,则a的取值范围为()A. B.C. D.12.设,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某几何体的三视图如图所示,则该几何体的体积为______.14.已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为,则,若把它推广到空间长方体中,体对角线与平面,平面,平面所成的角分别为,则可以类比得到的结论为___________________.15.双曲线的左焦点到直线的距离为________.16.椭圆的长轴长为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,,,为边上一点,且(1)求;(2)若,求18.(12分)已知椭圆的一个焦点与抛物线的焦点重合,椭圆上的动点到焦点的最大距离为.(1)求椭圆的标准方程;(2)过作一条不与坐标轴垂直的直线交椭圆于两点,弦的中垂线交轴于,当变化时,是否为定值?若是,定值为多少?19.(12分)已知椭圆的左,右焦点分别为,三个顶点(左、右顶点和上顶点)构成的三角形的面积为,离心率为方程的根.(1)求椭圆方程;(2)椭圆的一个内接平行四边形的一组对边分别过点和,如图,若这个平行四边形面积为,求平行四边形的四个顶点的纵坐标的乘积.20.(12分)如图,已知抛物线的焦点为F,抛物线C上的点到准线的最小距离为1(1)求抛物线C的方程;(2)过点F作互相垂直的两条直线l1,l2,l1与抛物线C交于A,B两点,l2与抛物线C交于C,D两点,M,N分别为弦AB,CD的中点,求|MF|·|NF|的最小值21.(12分)已知函数满足.(1)求的解析式,并判断其奇偶性;(2)若对任意,不等式恒成立,求实数a的取值范围.22.(10分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用点差法求出直线斜率,即可得出直线方程.【详解】设,则,两式相减得,即,则直线方程为,即.故选:B.2、C【解析】由双曲线的定义得出中各线段长(用表示),然后通过余弦定理得出的关系式,变形后可得离心率【详解】由题意又则有:可得:,,中,中.可得:解得:则有:故选:C3、D【解析】根据曲线方程的特征,发现曲线表示在轴上方的图象,画出图形,根据图形上直线的三个特殊位置,当已知直线位于直线位置时,把已知直线的解析式代入椭圆方程中,消去得到关于的一元二次方程,由题意可知根的判别式等于0即可求出此时对应的的值;当已知直线位于直线及直线的位置时,分别求出对应的的值,写出满足题意得的范围,综上,得到所有满足题意得的取值范围【详解】根据曲线,得到,解得:;,画出曲线的图象,为椭圆在轴上边的一部分,如图所示:当直线在直线的位置时,直线与椭圆相切,故只有一个交点,把直线代入椭圆方程得:,得到,即,化简得:,解得或(舍去),则时,直线与曲线只有一个公共点;当直线在直线位置时,直线与曲线刚好有两个交点,此时,当直线在直线位置时,直线与曲线只有一个公共点,此时,则当时,直线与曲线只有一个公共点,综上,满足题意得的范围是或故选:D4、B【解析】依题意可得,设,根据可得,,根据为抛物线上一点,可得.【详解】依题意可得,设,由得,所以,,所以,,因为为抛物线上一点,所以,解得.故选:B.【点睛】本题考查了平面向量加法的坐标运算,考查了求抛物线方程,属于基础题.5、A【解析】求出点坐标,做出关于准线的对称点,利用连点之间相对最短得出为的最小值【详解】解:抛物线的准线方程为,,到准线的距离为2,故点纵坐标为1,把代入抛物线方程可得不妨设在第一象限,则,点关于准线的对称点为,连接,则,于是故的最小值为故选:A【点睛】本题考查了抛物线的简单几何性质,属于基础题6、C【解析】先根据等比数列的通项公式得到,列出数列的前6项,将其中是数列的项的所有数去掉即可求解.【详解】因为是以1为首项、3为公比的等比数列,所以,则由,得,即数列中前6项分别为:1、3、9、27、81、243,其中1、9、81是数列的项,3、27、243不是数列的项,且,所以数列中第7项前(不含)插入的项的和最小为.故选:C.7、A【解析】根据等比数列的定义判断【详解】设的公差是,即,显然,且是常数,是等比数列,若中一个为1,则,则不是等比数列,只要,,都不可能是等比数列,如,,故选:A8、A【解析】过点且与原点O距离最远的直线垂直于直线,再由点斜式求解即可【详解】过点且与原点O距离最远的直垂直于直线,,∴过点且与原点O距离最远的直线的斜率为,∴过点且与原点O距离最远的直线方程为:,即.故选:A9、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C10、B【解析】先求导,再代入求值.详解】,所以.故选:B11、C【解析】求出函数的导数,要使函数在上为增函数,要保证导数在该区间上恒正即可,由此得到不等式,解得答案.详解】由题意可知,若在递增,则在恒成立,即有,则,故选:C.12、B【解析】先求出,再利用二倍角公式、和差角公式即可求解.【详解】因为,且,所以.所以,,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据三视图还原几何体,由此计算出几何体的体积.【详解】根据三视图可知,该几何体为如图所示三棱锥,所以该几何体的体积为.故答案为:14、【解析】先由线面角的定义得到,再计算的值即可得到结论【详解】在长方体中,连接,在长方体中,平面,所以对角线与平面所成的角为,对角线与平面所成的角为,对角线与平面所成的角为,显然,,,所以,,故答案为:15、【解析】根据双曲线方程求得左焦点的坐标,利用点到直线的距离公式即可求得结果.【详解】因为双曲线的方程为,设其左焦点的坐标为,故可得,解得,故左焦点的坐标为,则其到直线的距离.故答案为:.16、4【解析】把椭圆方程化成标准形式直接计算作答.【详解】椭圆方程化为:,令椭圆长半轴长为a,则,解得,所以椭圆的长轴长为4.故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)在△中,由余弦定理,即可求.(2)在中,由正弦定理,即可求.【详解】(1)在△中,,,,由余弦定理得:,∴(2)在中,,,,由正弦定理得:,即,∴18、(1)(2)是,【解析】(1)由抛物线方程求出其焦点坐标,结合椭圆的几何性质列出,的方程,解方程求,由此可得椭圆方程,(2)联立直线椭圆椭圆方程,求出弦的长和其中垂线方程,再计算,由此完成证明.【小问1详解】抛物线的交点坐标为(1,0),,又,又,∴,椭圆的标准方程为.【小问2详解】设直线的斜率为,则直线的方程为,联立消元得到,显然,,∴,又的中点坐标为,直线的中垂线的斜率为∴直线的中垂线方程为,令,,(常数).【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值19、(1);(2).【解析】(1)由椭圆离心率的性质及一元二次方程的根可得,再由椭圆参数关系、已知三角形面积求椭圆参数,即可得椭圆方程.(2)设直线,联立椭圆方程并结合韦达定理求,进而可得,再根据求参数t,可得,结合椭圆的对称性求,即可求结果.【小问1详解】由的根为,所以椭圆的离心率,依题意,,解得,即椭圆的方程为;【小问2详解】设直线,联立,消去得,由韦达定理得:,所以,所以,所以椭圆的内接平行四边形面积.所以,解得或(舍去),所以,根据椭圆的对称性知:,故平行四边形的四个顶点的纵坐标的乘积为.20、(1)(2)8【解析】(1)由抛物线C上的点到准线的最小距离为1,所以,即可求得抛物线的方程;(2)设直线AB的斜率为k,则直线CD的斜率为,得到直线AB的方程为,联立方程,求得,进而求得的坐标,得到的表达式,结合基本不等式,即可求解.【小问1详解】解:因为抛物线C上的点到准线的最小距离为1,所以,解得,所以抛物线C的方程为【小问2详解】解:由(1)可知焦点为F(1,0),由已知可得ABCD,所以直线AB,CD的斜率都存在且均不为0,设直线AB斜率为k,则直线CD的斜率为,所以直线AB的方程为,联立方程,消去x得,设点A(x1,y1),B(x2,y2),则,因为M(xM,yM)为弦AB的中点,所以,由,得,所以点,同理可得,所以,=,所以,当且仅当,即时,等号成立,所以的最小值为21、(1),是奇函数(2)【解析】(1)由求出,进而求得的解析式,利用奇偶函数的定义判断函数的奇偶性即可;(2)根据幂函数的单调性可得函数的单调性,求出函数的最小值,将不等式恒成立转化为对任意使得恒成立即可.【小问1详解】因为,所以,所以.所以.的定义城为,且,所以是奇函数.【小问2详解】因为,在上均为增函数,所以在上增函数,所以.对任意,不等式恒成立,则,所以,即实数a的取值范固为.22、(1),(2)【解析】(1)根据茎叶图得甲班中位数为,由此能求出,根据由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,从86分以上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古典名著《水浒传》练习题及答案(新)
- 2026年反洗钱远程培训终结性考试题库附答案【培优b卷】
- 广东医疗公务员考试试题及答案
- 2025年炎陵县辅警招聘考试真题汇编附答案
- 2026河北沧州市直卫健系统公立医院高层次人才选聘67人考试备考题库附答案
- 2025年安徽艺术学院毛泽东思想和中国特色社会主义理论体系概论期末考试模拟题及答案1套
- 2026年县域村委会光伏项目调研
- 2025山东威海市体育发展服务中心招聘1人(公共基础知识)测试题带答案解析
- 2026年交管12123驾照学法减分题库附参考答案(完整版)
- 广东公务员语言考试试题及答案
- TCWAN0063-XXXX焊接数值模拟固有应变法
- 塔司、信号工安全晨会(班前会)
- 2024春期国开电大《应用写作(汉语)》形考任务1-6参考答案
- 第11课《以社会主义核心价值观引领文化建设》第1框《社会主义核心价值观》课件 2023-2024学年 中职高教版(2023)中国特色社会主义
- 读书交流 《呼兰河传》课件
- 钢板铺设安全施工方案
- 学习动力的培养与保持
- 小学中学控辍保学防辍学主题班会模版成品课件
- 经纬度丛书 秦制两千年:封建帝王的权力规则
- ppt素材模板超级玛丽
- 金庸短篇小说《越女剑》中英文对照版
评论
0/150
提交评论