山西省陵川第一中学2026届高一数学第一学期期末经典试题含解析_第1页
山西省陵川第一中学2026届高一数学第一学期期末经典试题含解析_第2页
山西省陵川第一中学2026届高一数学第一学期期末经典试题含解析_第3页
山西省陵川第一中学2026届高一数学第一学期期末经典试题含解析_第4页
山西省陵川第一中学2026届高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省陵川第一中学2026届高一数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的周长为8,扇形圆心角的弧度数是2,则扇形的面积为()A.2 B.4C.6 D.82.函数f(x)=ln(-x)-x-2的零点所在区间为()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)3.直线l:与圆C:的位置关系是A.相切 B.相离C.相交 D.不确定4.已知函数是定义在R上的偶函数,且,当时,,则在区间上零点的个数为()A.2 B.3C.4 D.55.设函数,若关于的方程有四个不同的解,且,则的取值范围是()A. B.C. D.6.若函数的零点所在的区间为,则整数的值为()A. B.C. D.7.命题“,”的否定为()A., B.,C., D.,8.如图,在中,是的中点,若,则实数的值是A. B.1C. D.9.函数(且)的图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.10.已知函数,若关于的方程有8个不等的实数根,则的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则的值为__________12.设集合,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第位的子集是_________.13.已知实数,执行如图所示的流程图,则输出的x不小于55的概率为________14.命题“”的否定是________________.15.已知,则的值是________,的值是________.16.已知且,函数的图像恒过定点,若在幂函数的图像上,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆,直线(1)直线l一定经过哪一点;(2)若直线l平分圆C,求k的值;(3)若直线l与圆C相交于A,B,求弦长的最小值及此时直线的方程18.已知角的终边经过点.(1)求的值;(2)求的值.19.“百姓开门七件事,事事都会生垃圾,垃圾分类益处多,环境保护靠你我”,为了推行垃圾分类,某公司将原处理垃圾可获利万元的一条处理垃圾流水线,通过技术改造后,开发引进生态项目.经过测算,发现该流水线改造后获利万元与技术投入万元之间满足的关系式:.该公司希望流水线改造后获利不少于万元,其中为常数,且.(1)试求该流水线技术投入的取值范围;(2)求流水线改造后获利的最大值,并求出此时的技术投入的值.20.已知函数,(1)求函数的定义域;(2)试讨论关于x的不等式的解集21.已知角在第二象限,且(1)求的值;(2)若,且为第一象限角,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由给定条件求出扇形半径和弧长,再由扇形面积公式求出面积得解.【详解】设扇形所在圆半径r,则扇形弧长,而,由此得,所以扇形的面积.故选:B2、A【解析】先计算,,根据函数的零点存在性定理可得函数的零点所在的区间【详解】函数,时函数是连续函数,,,故有,根据函数零点存在性定理可得,函数的零点所在的区间为,故选:【点睛】本题主要考查函数的零点存在性定理的应用,不等式的性质,属于基础题3、C【解析】利用点到直线的距离公式求出直线和圆的距离,即可作出判断.【详解】圆C:的圆心坐标为:,则圆心到直线的距离,所以圆心在直线l上,故直线与圆相交故选C【点睛】本题考查的知识要点:直线与圆的位置关系的应用,点到直线的距离公式的应用4、C【解析】根据函数的周期性、偶函数的性质,结合零点的定义进行求解即可.【详解】因为,所以函数的周期为,当时,,即,因为函数是偶函数且周期为,所以有,所以在区间上零点的个数为,故选:C5、D【解析】由题意,根据图象得到,,,,,推出.令,,而函数.即可求解.【详解】【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.6、C【解析】结合函数单调性,由零点存在性定理可得解.【详解】由为增函数,且,可得零点所在的区间为,所以.故选:C.7、B【解析】利用含有量词的命题的否定方法:先改变量词,然后再否定结论,判断即可.【详解】解:由含有量词的命题的否定方法:先改变量词,然后再否定结论可得,命题“”的否定为:.故选:B.8、C【解析】以作为基底表示出,利用平面向量基本定理,即可求出【详解】∵分别是的中点,∴.又,∴.故选C.【点睛】本题主要考查平面向量基本定理以及向量的线性运算,意在考查学生的逻辑推理能力9、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误10、D【解析】画出函数的图象,利用函数的图象,判断的范围,然后利用二次函数的性质求解的范围【详解】解:函数,的图象如图:关于的方程有8个不等的实数根,必须有两个不相等的实数根且两根位于之间,由函数图象可知,.令,方程化为:,,,开口向下,对称轴为:,可知:的最大值为:,的最小值为:2故选:【点睛】本题考查函数与方程的应用,函数的零点个数的判断与应用,考查数形结合以及计算能力,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】∵且,∴,∴,∴cosα+sinα=0,或cosα−sinα=(不合题意,舍去),∴,故答案为−1.12、【解析】根据题意依次按“势”从小到大顺序排列,得到答案.【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:,,,,,,,.故排在第6的子集为.故答案为:13、【解析】设实数x∈[1,9],经过第一次循环得到x=2x+1,n=2,经过第二循环得到x=2(2x+1)+1,n=3,经过第三次循环得到x=2[2(2x+1)+1]+1,n=4此时输出x,输出的值为8x+7,令8x+7⩾55,得x⩾6,由几何概型得到输出的x不小于55的概率为.故答案为.14、.【解析】根据含有一个量词的命题的否定可得结果【详解】由含有一个量词的命题的否定可得,命题“”的否定为“”故答案为【点睛】对于含有量词的命题的否定要注意两点:一是要改换量词,把特称(全称)量词改为全称(特称)量词;二是把命题进行否定.本题考查特称命题的否定,属于简单题15、①.②.【解析】将化为可得值,通过两角和的正切公式可得的值.【详解】因为,所以;,故答案为:,.16、【解析】由题意得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)弦长的最小值为,此时直线的方程为【解析】(1)由可求出结果;(2)转化为圆心在直线上可求出结果;(3)当时,弦长最小,根据垂直关系求出直线斜率,根据点斜式求出直线的方程,利用勾股定理可求出最小弦长.【详解】(1)由得得,所以直线l一定经过点.(2)因为直线l平分圆C,所以圆心在直线上,所以,解得.(3)依题意可知当时,弦长最小,此时,所以,所以,即,圆心到直线的距离,所以.所以弦长的最小值为,此时直线的方程为.【点睛】关键点点睛:(3)中,将弦长最小转化为是解题关键.18、(1);(2).【解析】因为角终边经过点,设,,则,所以,,.(1)即得解;(2)化简即可得解.试题解析:因为角终边经过点,设,,则,所以,,.(1)(2)19、(1);(2)当时,,此时;当时,,此时.【解析】(1)由题意得出,解此不等式即可得出的取值范围;(2)比较与的大小关系,分析二次函数在区间上的单调性,由此可得出函数的最大值及其对应的的值.【详解】(1),,由题意可得,即,解得,因此,该流水线技术投入的取值范围是;(2)二次函数的图象开口向下,且对称轴为直线.①当时,即当时,函数在区间上单调递增,在区间上单调递减,所以,;②当时,即当时,函数在区间上单调递减,所以,.综上所述,当时,;当时,【点睛】本题考查二次函数模型的应用,同时也考查了二次函数最值的求解,考查分类讨论思想的应用,属于中等题.20、(1)(2)答案见解析【解析】(1)解不等式得出定义域;(2)利用对数函数的单调性解不等式得出解集.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论