江苏省徐州市重点初中2026届高一数学第一学期期末检测试题含解析_第1页
江苏省徐州市重点初中2026届高一数学第一学期期末检测试题含解析_第2页
江苏省徐州市重点初中2026届高一数学第一学期期末检测试题含解析_第3页
江苏省徐州市重点初中2026届高一数学第一学期期末检测试题含解析_第4页
江苏省徐州市重点初中2026届高一数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省徐州市重点初中2026届高一数学第一学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆x2+y2+2x﹣4y+1=0的半径为()A.1 B.C.2 D.42.已知命题“,使”是假命题,则实数的取值范围是()A. B.C. D.3.已知角终边上A点的坐标为,则()A.330 B.300C.120 D.604.若,则有()A.最小值为3 B.最大值为3C.最小值为 D.最大值为5.下列函数在其定义域上既是奇函数又是减函数的是()A. B.C. D.6.已知集合,集合B满足,则满足条件的集合B有()个A.2 B.3C.4 D.17.半径为1cm,圆心角为的扇形的弧长为()A. B.C. D.8.若函数是幂函数,且其图象过点,则函数的单调增区间为A. B.C. D.9.已知全集,集合,那么()A. B.C. D.10.设实数满足,函数的最小值为()A. B.C. D.6二、填空题:本大题共6小题,每小题5分,共30分。11.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.12.正方体ABCD-A1B1C1D1中,二面角C1-AB-C平面角等于________13.某超市对6个时间段内使用两种移动支付方式的次数用茎叶图作了统计,如图所示,使用支付方式的次数的极差为______;若使用支付方式的次数的中位数为17,则_______.支付方式A支付方式B420671053126m9114.将函数的图象先向右平移个单位长度,得到函数________________的图象,再把图象上各点横坐标缩短到原来的(纵坐标不变),得到函数________________的图象15.已知,则_________16.已知关于x的不等式的解集为,则的解集为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数fx=sin(1)求ω的值;(2)求证:当x∈0,7π1218.已知函数.(1)若函数的定义域和值域均为,求实数的值;(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围.(可能用到的不等关系参考:若,且,则有)19.冰雪装备器材产业是冰雪产业重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?20.设函数,(1)根据定义证明在区间上单调递增;(2)判断并证明的奇偶性;(3)解关于x的不等式.21.已知,求下列各式的值.(1);(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】将圆的方程化为标准方程即可得圆的半径.【详解】由圆x2+y2+2x﹣4y+1=0化为标准方程有:,所以圆的半径为2.故选:C【点睛】本题考查圆的一般方程与标准方程的互化,并由此得出圆的半径大小,属于基础题.2、B【解析】原命题等价于恒成立,故即可,解出不等式即可.【详解】因为命题“,使”是假命题,所以恒成立,所以,解得,故实数的取值范围是故选:B3、A【解析】根据特殊角的三角函数值求出点的坐标,再根据任意角三角函数的定义求出的值.【详解】,,即,该点在第四象限,由,,得.故选:A.4、A【解析】利用基本不等式即得,【详解】∵,∴,∴,当且仅当即时取等号,∴有最小值为3.故选:A.5、D【解析】对于A:由定义法判断出不是奇函数,即可判断;对于B:判断出在R上为增函数,即可判断;对于C:不能说在定义域是减函数,即可判断;对于D:用图像法判断.【详解】对于A:的定义域为R..所以不是奇函数,故A错误;对于B:在R上为增函数.故B错误;对于C:在为减函数,在为减函数,但不能说在定义域是减函数.故C错误;对于D:,作出图像如图所示:所以既是奇函数又是减函数.故D正确.故选:D6、C【解析】写出满足题意的集合B,即得解.【详解】因为集合,集合B满足,所以集合B={3},{1,3},{2,3},{1,2,3}.故选:C【点睛】本题主要考查集合的并集运算,意在考查学生对这些知识的理解掌握水平.7、D【解析】利用扇形弧长公式直接计算即可.【详解】圆心角化为弧度为,则弧长为.故选:D.8、B【解析】分别求出m,a的值,求出函数的单调区间即可【详解】解:由题意得:,解得:,故,将代入函数的解析式得:,解得:,故,令,解得:,故在递增,故选B【点睛】本题考查了幂函数的定义以及对数函数的性质,是一道基础题9、C【解析】应用集合的补运算求即可.【详解】∵,,∴.故选:C10、A【解析】将函数变形为,再根据基本不等式求解即可得答案.详解】解:由题意,所以,所以,当且仅当,即时等号成立,所以函数的最小值为.故选:A【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不止一个)【解析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:12、45°【解析】解:如图,设正方体ABCD-A1B1C1D1的棱长为1,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,则A(1,0,0),B(1,1,0),C1(0,1,1),∴=(0,1,0),=(-1,1,1),设面ABC1的法向量为=(x,y,z),∵•=0,•=0,∴y=0,-x+y+z=0,∴=(1,0,1),∵面ABC的法向量=(0,0,1),设二面角C1-AB-C的平面角为θ,∴cosθ=|cos<,>|=,∴θ=45°,答案为45°考点:二面角的平面角点评:本题考查二面角的平面角及求法,是基础题.解题时要认真审题,注意向量法的合理运用13、①.;②.【解析】根据极差,中位数的定义即可计算.【详解】解:由茎叶图可知:使用支付方式的次数的极差为:;使用支付方式的次数的中位数为17,易知:,解得:.故答案为:;.14、①.②.【解析】根据三角函数的图象变换可得变换后函数的解析式.【详解】由三角函数的图象变换可知,函数的图象先向右平移可得,再把图象上各点横坐标缩短到原来的(纵坐标不变)可得,故答案为:;15、【解析】两边同时取以15为底的对数,然后根据对数性质化简即可.【详解】因为所以,所以,故答案为:16、或【解析】由已知条件知,结合根与系数关系可得,代入化简后求解,即可得出结论.【详解】关于x的不等式的解集为,可得,方程的两根为,∴,所以,代入得,,即,解得或.故答案为:或.【点睛】本题考查一元二次不等式与一元二次方程的关系,以及解一元二次不等式,属于基础题.易错点是忽视对的符号的判断.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)证明见解析【解析】(1)解方程T=π=2π(2)利用三角函数的图象和性质,结合不等式逐步求出函数的最值即得证.【小问1详解】解:由题得T=π=2π【小问2详解】证明:fx因为0≤x≤7∴-π∴-3所以当x∈0,7π12即得证.18、(1)2;(2).【解析】(1)确定函数的对称轴,从而可得函数的单调性,利用的定义域和值域均是,建立方程,即可求实数的值;(2)由函数的单调性得出在单调递减,在单调递增,从而求出在上的最大值和最小值,进而求出实数的取值范围.【小问1详解】易知的对称轴为直线,故在上为减函数,∴在上单调递减,即,,代入解得或(舍去).故实数的值为2.【小问2详解】∵在是减函数,∴.∴在上单调递减,在上单调递增,又函数的对称轴为直线,∴,,又,∴.∵对任意的,总有,∴,即,解得,又,∴,即实数的取值范围为.19、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.20、(1)证明见解析(2)奇函数,证明见解析(3)【解析】(1)根据函数单调性的定义,准确运算,即可求解;(2)根据函数奇偶性的定义,准确化简,即可求解;(3)根据函数的奇偶性和单调性,把不等式转化为,得到,即可求解【小问1详解】证明:,且,则,因为,,,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论