江苏省南京市鼓楼区2026届高一数学第一学期期末监测模拟试题含解析_第1页
江苏省南京市鼓楼区2026届高一数学第一学期期末监测模拟试题含解析_第2页
江苏省南京市鼓楼区2026届高一数学第一学期期末监测模拟试题含解析_第3页
江苏省南京市鼓楼区2026届高一数学第一学期期末监测模拟试题含解析_第4页
江苏省南京市鼓楼区2026届高一数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市鼓楼区2026届高一数学第一学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知命题,,则为()A., B.,C., D.,2.已知函数,若当时,恒成立,则实数的取值范围是A. B.C. D.3.设,且,则()A. B.10C.20 D.1004.如图,在平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的表面积为()A. B.C. D.5.已知曲线的图像,,则下面结论正确的是()A.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线6.如图,在平面内放置两个相同的直角三角板,其中,且三点共线,则下列结论不成立的是A. B.C.与共线 D.7.已知扇形的圆心角为,半径为10,则扇形的弧长为()A. B.1C.2 D.48.函数的图像向左平移个单位长度后是奇函数,则在上的最小值是()A. B.C. D.9.设,则的值为A. B.C. D.10.已知函数,则该函数的单调递减区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数为奇函数,则___________.12.已知点A(3,2),B(﹣2,a),C(8,12)在同一条直线上,则a=_____.13.若函数(,且)在上是减函数,则实数的取值范围是__________.14.在中,三个内角所对的边分别为,,,,且,则的取值范围为__________15.已知函数f(x)的定义域是[-1,1],则函数f(log2x)的定义域为____16.表示一位骑自行车和一位骑摩托车的旅行者在相距80km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3h,晚到1h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5h后追上了骑自行车者;④骑摩托车者在出发1.5h后与骑自行车者速度一样其中,正确信息的序号是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设集合,.(1)若,求;(2)若,求实数的取值集合.18.已知函数,图象上两相邻对称轴之间的距离为;_______________;(Ⅰ)在①的一条对称轴;②的一个对称中心;③的图象经过点这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(Ⅱ)若动直线与和的图象分别交于、两点,求线段长度的最大值及此时的值.注:如果选择多个条件分别解答,按第一个解答计分.19.甲乙两人用两颗质地均匀的骰子(各面依次标有数字1、2、3、4、5、6的正方体)做游戏,规则如下:若掷出的两颗骰子点数之和为3的倍数,则由原投掷人继续投掷,否则由对方接着投掷.第一次由甲投掷(1)求第二次仍由甲投掷的概率;(2)求游戏前4次中乙投掷的次数为2的概率20.某企业为抓住环境治理带来的历史性机遇,决定开发生产一款大型净水设备.生产这款设备的年固定成本为万元,每生产台需要另投入成本(万元),当年产量不足台时,万元,当年产量不少于台时,万元.若每台设备的售价为万元,经过市场分析,该企业生产的净水设备能全部售完(1)求年利润(万元)关于年产量(台)的函数关系式;(2)年产量为多少台时,该企业在这一款净水设备的生产中获利最大?最大利润是多少万元?21.总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到年中国的汽车总销量将达到万辆,并希望新能源汽车至少占总销量的五分之一.江苏某新能源公司某年初购入一批新能源汽车充电桩,每台元,到第年年末每台设备的累计维修保养费用为元,每台充电桩每年可给公司收益元.()(1)每台充电桩第几年年末开始获利;(2)每台充电桩在第几年年末时,年平均利润最大.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】特称命题的否定为全称命题,所以,存在性量词改为全称量词,结论直接改否定即可.【详解】命题,,则:,答案选A【点睛】本题考查命题的否定,属于简单题.2、D【解析】是奇函数,单调递增,所以,得,所以,所以,故选D点睛:本题考查函数的奇偶性和单调性应用.本题中,结合函数的奇偶性和单调性的特点,转化得到,分参,结合恒成立的特点,得到,求出参数范围3、A【解析】根据指数式与对数的互化和对数的换底公式,求得,,进而结合对数的运算公式,即可求解.【详解】由,可得,,由换底公式得,,所以,又因为,可得故选:A.4、B【解析】由题意,的中点就是球心,求出球的半径,即可得到球的表面积【详解】解:由题意,四面体顶点在同一个球面上,和都是直角三角形,所以的中点就是球心,所以,球的半径为:,所以球的表面积为:故选B【点睛】本题是基础题,考查四面体的外接球的表面积的求法,找出外接球的球心,是解题的关键,考查计算能力,空间想象能力5、D【解析】先将转化为,再根据三角函数图像变换的知识得出正确选项.【详解】对于曲线,,要得到,则把上各点的横坐标缩短到原来的倍,纵坐标不变,得到,再把得到的曲线向左平移个单位长度,得到,即得到曲线.故选:D.6、D【解析】设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=m,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,,故A、B、C成立;而,,即不成立,故选D.7、D【解析】由扇形的弧长公式运算可得解.【详解】解:因为扇形的圆心角为,半径为10,所以由弧长公式得:扇形的弧长为故选:D8、D【解析】由函数图像平移后得到的是奇函数得,再利用三角函数的图像和性质求在上的最小值.【详解】平移后得到函数∵函数为奇函数,故∵,∴,∴函数为,∴,时,函数取得最小值为故选【点睛】本题主要考查三角函数图像的变换,考查三角函数的奇偶性和在区间上的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.9、A【解析】先利用诱导公式以及同角的三角函数关系化简,再根据特殊角的三角函数值代值计算【详解】解:由题意得,,则,故选:A【点睛】本题主要考查诱导公式和特殊角的三角函数值,考查同角的平方关系,属于基础题10、C【解析】先用诱导公式化简,再求单调递减区间.【详解】要求单调递减区间,只需,.故选:C.【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于或的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的定义,结合奇函数的定义进行求解即可.【详解】因为是幂函数,所以,或,当时,,因为,所以函数是偶函数,不符合题意;当时,,因为,所以函数是奇函数,符合题意,故答案为:12、﹣8【解析】根据AC的斜率等于AB的斜率得到,解方程即得解.【详解】由题意可得AC的斜率等于AB的斜率,∴,解得a=﹣8.故答案为:-8【点睛】本题主要考查斜率的计算和三点共线,意在考查学生对这些知识的理解掌握水平.13、【解析】根据分段函数的单调性,列出式子,进行求解即可.【详解】由题可知:函数在上是减函数所以,即故答案为:14、【解析】∵,,且,∴,∴,∴在中,由正弦定理得,∴,∴,∵,∴∴∴的取值范围为答案:15、【解析】根据给定条件列出使函数f(log2x)有意义的不等式组,再求出其解集即可.【详解】因函数f(x)的定义域是[-1,1],则在f(log2x)中,必有,解不等式可得:,即,所以函数f(log2x)的定义域为.故答案为:16、①②③【解析】看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误故答案为①②③.点睛:研究函数问题离不开函数图象,函数图象反映了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题、寻找解决问题的方法三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】易得.(1)由;(2),然后利用分类讨论思想对、和分三种情况进行讨论.试题解析:集合(1)若,则,则(2),∴,当,即时,成立;当,即时,(i)当时,,要使得,,只要解得,所以的值不存在;(ii)当时,,要使得,只要解得综上,的取值集合是考点:集合的基本运算.18、(Ⅰ)选①或②或③,;(Ⅱ)当或时,线段的长取到最大值.【解析】(Ⅰ)先根据题中信息求出函数的最小正周期,进而得出.选①,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;选②,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;选③,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;(Ⅱ)令,利用三角恒等变换思想化简函数的解析式,利用正弦型函数的基本性质求出在上的最大值和最小值,由此可求得线段长度的最大值及此时的值.【详解】(Ⅰ)由于函数图象上两相邻对称轴之间的距离为,则该函数的最小正周期为,,此时.若选①,则函数的一条对称轴,则,得,,当时,,此时,;若选②,则函数的一个对称中心,则,得,,当时,,此时,;若选③,则函数的图象过点,则,得,,,,解得,此时,.综上所述,;(Ⅱ)令,,,,当或时,即当或时,线段的长取到最大值.【点睛】本题考查利用三角函数的基本性质求解析式,同时也考查了余弦型三角函数在区间上最值的计算,考查计算能力,属于中等题.19、(1)(2)【解析】(1)由题意利用古典概型求概率的计算公式求得结果(2)游戏的前4次中乙投掷的次数为2,包含3种情况,根据独立事件的乘法公式及互斥事件的加法公式,可计算结果【小问1详解】求第二次仍由甲投,说明第一次掷出的点数之和为3的倍数,所有的情况共有种,其中,掷出的点数之和为3的倍数的情况有、、、、、,、、、、、,共计12种情况,故第二次仍由甲投掷的概率为【小问2详解】由(1)可得掷出的两颗骰子点数之和为3的倍数的概率为,所以两颗骰子点数之和不为3的倍数的概率为,游戏的前4次中乙投掷的次数为2,可能乙投掷的次数为第二次第三次,则概率为,或第二次第四次,则概率为,或第三次第四次,则概率为,以上三个事件互斥,所以其概率为.20、(1);(2)当年产量为台时,该企业在这款净水设备的生产中获利润最大,最大为万元【解析】(1)分别在和两种情况下,由可得函数关系式;(2)利用二次函数性质、基本不等式可分别求得和时的最大值,比较即可得到结果.【小问1详解】当,时,;当,时,;综上所述:.【小问2详解】当,时,,则当时,的最大值为;当,时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论