版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届连云港市重点中学高一数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a=20.1,b=log43.6,c=log30.3,则()A.a>b>c B.b>a>cC.a>c>b D.c>a>b2.已知a>0,那么2+3a+4A.23 B.C.2+23 D.3.已知点,直线与线段相交,则直线的斜率的取值范围是()A.或 B.C. D.4.下列函数中既是偶函数,又在上单调递增的是()A B.C. D.5.“”是“函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.若偶函数在区间上是减函数,是锐角三角形的两个内角,且,则下列不等式中正确的是()A. B.C. D.7.已知,,则a,b,c的大小关系为A. B.C. D.8.已知,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知集合,则()A.0或1 B.C. D.或10.已知函数是定义在上的偶函数,当时,,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最大值为_______12.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.13.已知(其中且为常数)有两个零点,则实数的取值范围是___________.14.已知,则____________.(可用对数符号作答)15.函数定义域为________.(用区间表示)16.在平面直角坐标系xOy中,角α与角β均以x轴的非负半轴为始边,它们的终边关于坐标原点对称.若sinα=1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)判断函数f(x)的单调性,并用定义给出证明;(2)解不等式:;(3)若关于x方程只有一个实根,求实数m的取值范围18.某市郊区有一加油站,2018年初汽油的存储量为50吨,计划从年初起每周初均购进汽油吨,以满足城区内和城外汽车用油需求,已知城外汽车用油每周5吨;城区内汽车用油前个周需求量吨与的函数关系式为,为常数,且前4个周城区内汽车的汽油需求量为100吨.(1)试写出第个周结束时,汽油存储量(吨)与的函数关系式;(2)要使16个周内每周按计划购进汽油之后,加油站总能满足城区内和城外的需求,且每周结束时加油站的汽油存储量不超过150吨,试确定的取值范围.19.已知函数.(1)求的最小正周期以及对称轴方程;(2)设函数,求在上的值域.20.已知为的三个内角,向量与向量共线,且角为锐角.(1)求角的大小;(2)求函数的值域.21.已知函数,.(1)若在区间上是单调函数,则的取值范围;(2)在(1)的条件下,是否存在实数,使得函数与函数的图象在区间上有唯一的交点,若存在,求出的范围,若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】直接判断范围,比较大小即可.【详解】,,,故a>b>c.故选:A.2、D【解析】利用基本不等式求解.【详解】因为a>0,所以2+3a+4当且仅当3a=4a,即故选:D3、A【解析】,所以直线过定点,所以,,直线在到之间,所以或,故选A4、C【解析】根据常见函数的单调性和奇偶性,即可容易判断选择.【详解】根据题意,依次分析选项:对于A,,奇函数,不符合题意;对于B,,为偶函数,在上单调递减,不符合题意;对于C,,既是偶函数,又在上单调递增,符合题意;对于D,为奇函数,不符合题意;故选:C.【点睛】本题考查常见函数单调性和奇偶性的判断,属简单题.5、A【解析】根据充分必要条件的定义判断【详解】时,是偶函数,充分性满足,但时,也是偶函数,必要性不满足应是充分不必要条件故选:A6、C【解析】根据,可得,根据的单调性,即可求得结果.【详解】因为是锐角三角形的两个内角,故可得,即,又因为,故可得;是偶函数,且在单调递减,故可得在单调递增,故.故选:C.【点睛】本题考查由函数奇偶性判断函数的单调性,涉及余弦函数的单调性,属综合中档题.7、D【解析】利用指数函数与对数函数的单调性即可得出【详解】解:,,又,故选D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题8、C【解析】根据充分条件和必要条件定义结合不等式的性质即可判断.【详解】若,则,所以充分性成立,若,则,所以必要性成立,所以“”是“”的充分必要条件,故选:C.9、D【解析】由集合的概念可知方程只有一个解,且解为,分为二次项系数为0和不为0两种情形,即可得结果.【详解】因为为单元素集,所以方程只有一个解,且解为,当时,,此时;当时,,即,此时,故选:D.10、D【解析】由函数是定义在上的偶函数,借助奇偶性,将问题转化到已知区间上,再求函数值【详解】因为是定义在上的偶函数,且当时,,所以,选择D【点睛】已知函数的奇偶性问题,常根据函数的奇偶性,将问题进行转化,转化到条件给出的范围再进行求解二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】消元,转化为求二次函数在闭区间上的最值【详解】,,时,取到最大值,故答案为:12、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【点睛】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.13、【解析】设,可转化为有两个正解,进而可得参数范围.【详解】设,由有两个零点,即方程有两个正解,所以,解得,即,故答案为:.14、【解析】根据对数运算法则得到,再根据对数运算法则及三角函数弦化切进行计算.【详解】∵,∴,又,.故答案为:15、【解析】由对数真数大于0,偶次根式被开方式大于等于0,列出不等式组求解即可得答案.【详解】解:由,得,所以函数的定义域为,故答案为:.16、-14【解析】根据题意,利用同角三角函数的基本关系,再由诱导公式,可得答案.【详解】∵角α与角β的终边关于坐标原点对称,所以β=α+由诱导公式可得:sinβ=-故答案为:-三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)f(x)在R上单调递增;证明见解析;(2);(3){-3}(1,+∞).【解析】(1)利用函数单调性的定义及指数函数的性质即得;(2)由题可得,然后利用函数单调性即得;(3)由题可得方程有且只有一个正数根,分m=1,m≠1讨论,利用二次函数的性质可得.【小问1详解】f(x)在R上单调递增;任取x1,x2∈R,且x1<x2,则∵∴,∴即∴函数f(x)在R上单调递增【小问2详解】∵,∵,∴,又∵函数f(x)在R上单调递增,∴,∴不等式的解集为【小问3详解】由可得,,即,此方程有且只有一个实数解令,则t>0,问题转化为:方程有且只有一个正数根①当m=1时,,不合题意,②当m≠1时,(i)若△=0,则m=-3或,若m=-3,则,符合题意;若,则t=-2,不合题意,(ii)若△>0,则m<-3或,由题意,方程有一个正根和一个负根,即,解得m>1综上,实数m的取值范围是{-3}(1,+∞)18、(1)(2)【解析】(1)根据题意前4个周城区内汽车的汽油需求量为100吨,得,;(2)每周结束时加油站的汽油存储量不超过150吨,故,恒成立,转化为恒成立,通过换元分别求得函数的最值即可解析:(1)由已知条件得,解得.所以..(2)由题意,,所以,恒成立,即恒成立.设,则,所以()恒成立,由()恒成立,得(当,即时取等号);由()恒成立,得(当,即时取等号),所以的取值范围是.点睛:这个题目考查了函数的实际应用;对于这种题目,首先理解好题意,找到函数模型,列出数学表达式,注意函数的定义域要结合实际.在处理表达式时,通常会遇到求函数的最值和值域的问题,一般高次的会用到求导,研究单调性等.也可能通过换元将函数转化为熟悉的二次,或单调函数.19、(1)最小正同期为,对称轴方程为(2)【解析】(1)利用三角函数的恒等变换公式将化为只含有一个三角函数形式,即可求得结果;(2)将展开化简,然后采用整体处理的方法,求得答案.【小问1详解】,所以的最小正同期为.令,得对称轴方程为.【小问2详解】由题意可知,因为,所以,故,所以,故在上的值域为.20、(1);(2).【解析】(1)根据平行向量的坐标关系即可得到(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,这样即可解出tan2A,结合A为锐角,即可求出A;(2)由B+C便得C,从而得到,利用二倍角的余弦公式及两角差的正余弦公式即可化简原函数y=1+sin(B),由前面知0,从而可得到B的范围,结合正弦函数的图象即可得到的范围,即可得出原函数的值域【详解】(1)由m∥n,得(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,得到2(1-sin2A)-sin2A+cos2A=0,所以2cos2A-sin2A+cos2A=0,即3cos2A-sin2A=0得,所以且为锐角,则.(2)由(1)知,,即,=,所以,=,且,则,所以,则,即函数的值域为.【点睛】本题考查平行向量的坐标的关系,同角基本关系及向量数量积的计算公式,考查了利用正弦函数的图象求最值及二倍角的余弦公式,两角差的正余弦公式等,属于综合题21、(1)或;(2)存在,且的取值范围是.【解析】(1)分、两种情况讨论,根据函数在区间上单调可出关于的不等式,综合可得出实数的取值范围;(2)分、、、四种情况讨论,分析两个函数在区间上的单调性,根据已知条件可得出关于实数的不等式(组),综合可解得实数的取值范围.【小问1详解】解:当时在上单调递减.当时,是二次函数,其对称轴为直线,在区间上是单调函数,或,即或,解得:或或.综上:或.【小问2详解】解:①当时,单调递减,单调递增,则函数单调递增,因为,,由零点存在定理可知,存在唯一的使得,此时,函数与函数在区间上的图象有唯一的交点,合乎题意;②当时,二次函数的图象开口向下,对称轴为直线,所以,在上单调递减,单调递增,则函数在上单调递增,要使得函数与函数的图象在区间上有唯一的交点,则,解得,此时;③当时,二次函数的图象开口向上,对称轴,则在上单调递减,在上单调递增,则函数上单调递增,要使得函数与函数的图象在区间上有唯一的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浙江省丽水市庆元县留置保安员笔试真题附答案解析
- 电工(高级)资格证考试考前冲刺练习试题及答案详解参考
- 我心爱的一件物品的故事(13篇)
- 2025年大兴安岭地区松岭区留置保安员笔试真题附答案解析
- 2025年临沧市耿马县保安员招聘考试试题题库附答案解析
- 财务报表制作与审核标准流程手册
- 2025年浙江省台州市三门县保安员招聘考试真题附答案解析
- 小儿毛细支气管炎处理试题及答案
- 起点-合同-模板(3篇)
- 2025年太原市尖草坪区留置保安员笔试真题附答案解析
- 水利电工程施工地质规程
- DL∕T 5343-2018 110kV~750kV架空输电线路张力架线施工工艺导则
- 房产证授权委托书的模板
- 传染病防治知识试题库(共100题)
- 个人信息保护培训课件
- 理想信念教育励志类主题班会
- 《建筑基坑降水工程技术规程》DBT29-229-2014
- 特应性皮炎临床路径
- 2024届重庆外国语学校高一数学第一学期期末检测模拟试题含解析
- 2023年广东学业水平考试物理常考知识点
- 中山版-四年级第一学期综合实践活动教案
评论
0/150
提交评论