版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福清市华侨中学2026届高一上数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集U=R,集合,,则集合()A. B.C. D.2.将函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是A. B.C. D.3.不论为何实数,直线恒过定点()A. B.C. D.4.已知,,且,,,那么的最大值为()A. B.C.1 D.25.设集合,则()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)6.已知直线的方程是,的方程是,则下列各图形中,正确的是A. B.C. D.7.如图,在正方体中,分别为的中点,则异面直线和所成角的大小为A. B.C. D.8.函数,,则函数的图象大致是()A. B.C. D.9.已知,点在轴上,,则点的坐标是A. B.C.或 D.10.如图,在中,为边上的中线,,设,若,则的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.若函数是上的平均值函数,则实数的取值范围是____12.已知,则________.13.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.14.已知幂函数的图象过点,则______15.已知函数,则的值是________16.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,.当k为何值时:(1);(2).18.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元设公司一年内共生产该款手机万部且并全部销售完,每万部的收入为万元,且写出年利润万元关于年产量(万部)的函数关系式;当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润19.已知函数(,为常数,且)的图象经过点,(1)求函数的解析式;(2)若关于不等式对都成立,求实数的取值范围20.已知函数(1)试判断函数在区间上的单调性,并用函数单调性定义证明;(2)对任意时,都成立,求实数的取值范围21.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度之间的函数关系是(且),若牛奶放在0℃的冰箱中,保鲜时间是200小时,而在1℃的温度下则是160小时,而在2℃的温度下则是128小时.(1)写出保鲜时间关于储藏温度(℃)的函数解析式;(2)利用(1)的结论,若设置储藏温度为3℃的情况下,某人储藏一瓶牛奶的时间为90至100小时之间,则这瓶牛奶能否正常饮用?(说明理由)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】依次计算集合,最后得出结果即可.【详解】,,或,故.故选:D.2、A【解析】由函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍得到,向右平移个单位得到,将代入得,所以函数的一个对称中心是,故选A3、C【解析】将直线方程变形为,即可求得过定点坐标.【详解】根据题意,将直线方程变形为因为位任意实数,则,解得所以直线过的定点坐标为故选:C【点睛】本题考查了直线过定点的求法,属于基础题.4、C【解析】根据题意,由基本不等式的性质可得,即可得答案.【详解】根据题意,,,,则,当且仅当时等号成立,即的最大值为1.故选:5、C【解析】由题意分别计算出集合的补集和集合,然后计算出结果.【详解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故选:C6、D【解析】对于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,对应l2也符合,7、D【解析】连DE,交AF于G,根据平面几何知识可得,于是,进而得.又在正方体中可得底面,于是可得,根据线面垂直的判定定理得到平面,于是,所以两直线所成角为【详解】如图,连DE,交AF于G在和中,根据正方体的性质可得,∴,∴,∴,∴又在正方体中可得底面,∵底面,∴,又,∴平面,∵平面,∴,∴异面直线和所成角的大小为故选D【点睛】求异面直线所成的角常采用“平移线段法”,将空间角的问题转化为平面问题处理,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角时通常放在三角形中利用解三角形的方法进行求解,有时也可通过线面间的垂直关系进行求解8、C【解析】先判断出为偶函数,排除A;又,排除D;利用单调性判断B、C.【详解】因为函数,,所以函数.所以定义域为R.因为,所以为偶函数.排除A;又,排除D;因为在为增函数,在为增函数,所以在为增函数.因为为偶函数,图像关于y轴对称,所以在为减函数.故B错误,C正确.故选:C9、C【解析】依题意设,根据,解得,所以选.10、C【解析】分析:求出,,利用向量平行的性质可得结果.详解:因为所以,因为,则,有,,由可知,解得.故选点睛:本题主要考查平面向量的运算,属于中档题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)二、填空题:本大题共6小题,每小题5分,共30分。11、##,##【解析】根据题意,方程,即在内有实数根,若函数在内有零点.首先满足,解得,或.对称轴为.对分类讨论即可得出【详解】解:根据题意,若函数是,上的平均值函数,则方程,即在内有实数根,若函数在内有零点则,解得,或(1),.对称轴:①时,,,(1),因此此时函数在内一定有零点.满足条件②时,,由于(1),因此函数在内不可能有零点,舍去综上可得:实数的取值范围是,故答案为:,12、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.13、【解析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果.【详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.14、3【解析】先利用待定系数法代入点的坐标,求出幂函数的解析式,再求的值.【详解】设,由于图象过点,得,,,故答案为3.【点睛】本题考查幂函数的解析式,以及根据解析式求函数值,意在考查对基础知识的掌握与应用,属于基础题.15、-1【解析】利用分段函数的解析式,代入即可求解.【详解】解:因为,则.故答案为:-116、【解析】根据图象先求出函数的解析式,然后由已知构造不等式0.25,解不等式可得每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间【详解】解:当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有,解得,所以,所以服药一次治疗疾病有效的时间为个小时,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或2;(2)【解析】(1)根据向量共线坐标公式列方程即可求解;(2)根据向量垂直坐标公式列方程即可求解【详解】(1)若,有,整理为解得或2;(2)若,有,整理为解得:18、(1),;(2)当时,y取得最大值57600万元【解析】根据题意,即可求解利润关于产量的关系式为,化简即可求出;由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润【详解】(1)由题意,可得利润关于年产量的函数关系式为,.由可得,当且仅当,即时取等号,所以当时,y取得最大值57600万元【点睛】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润关于年产量的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题19、(1)(2)【解析】(1)将,,代入函数,利用待定系数法即可得出答案;(2)对都成立,即,,令,,令,求出函数的最小值即可得解.【小问1详解】解:∵函数的图象经过点,,∴,即,又∵,∴,,∴,即;【小问2详解】解:由(1)知,,∴对都成立,即对都成立,∴,,令,,则,令,即,,∴的图象是开口向下且关于直线对称的抛物线,∴,∴,∴的取值区间为20、(1)在上单调递减,证明见解析;(2).【解析】(1)利用单调性定义:设并证明的大小关系即可.(2)由(1)及函数不等式恒成立可知:在已知区间上恒成立,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 未来五年旅游交通设备租赁企业县域市场拓展与下沉战略分析研究报告
- 未来五年亚麻长麻纺细纱机企业县域市场拓展与下沉战略分析研究报告
- 未来五年纺织专用设备修理企业数字化转型与智慧升级战略分析研究报告
- 未来五年冷冻鱼企业县域市场拓展与下沉战略分析研究报告
- 未来五年地中轮重秤企业县域市场拓展与下沉战略分析研究报告
- 未来五年精制棕榈油(食用)企业ESG实践与创新战略分析研究报告
- 未来五年大豆企业县域市场拓展与下沉战略分析研究报告
- 安全应急演练方案
- 《药品生产质量管理规范》课件-2.2.2 人员健康管理
- 《药品生产质量管理规范》课件-1.1.1 GMP的产生与发展
- 2025宁电投(石嘴山市)能源发展有限公司秋季校园招聘100人笔试试题附答案解析
- 汽车电子连接器检测技术规范
- 票据业务知识培训
- 2025年医学应聘面试题目及答案
- 石菖蒲病害防治
- 国企财务岗笔试题目及答案
- 恒瑞医药资本结构优化研究
- 新高考中三角函数类型题的题型研究及解题策略
- GB 38144-2025眼面部防护应急喷淋和洗眼设备
- 天一大联考2024-2025学年高三年级上学期期末检测政治试题(含答案)
- 监狱教育改造类课件教学
评论
0/150
提交评论