版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级(上)数学期中考试题【含答案】一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,请将答案写在答题卡上)1.在﹣1,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有()A.2个 B.3个 C.4个 D.5个2.为了加快4G网络建设,我市电信运营企业将根据各自发展规划,今年预计完成4A.3.93×103 B.3.93×105 C.3.93×107 D.3.93×3.若(x﹣2)2与|5+y|互为相反数,则yx的值()A.2 B.﹣10 C.10 4.如图,数轴的单位长度为1,若点A和点C所表示的两个数的绝对值相等,则点B表示的数是()A.﹣3 B.﹣1 C.1 5.下列各式运算正确的是()A.2(a﹣1)=2a﹣1 B.a2b﹣ab2=0C.a2+a2=2a2 D.2a3﹣3a36.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A. B. C. D.7.下列说法中,正确的是()A.若x2=y2,则x=y B.若|x|=|y|,则x=y C.若x>|y|,则x>y D.若|x|>|y|,则x>y8.下列说法,正确的有()(1)整数和分数统称为有理数;(2)符号不同的两个数叫做互为相反数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.A.1个 B.2个 C.3个 D.4个9.如图,将小正方体切去一个角后再展开,其平面展开图正确的是()A. B. C. D.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.4二、填空题(本大题共4个小题,每小题4分,共16分,请将答案写在答题卡上)11.计算(﹣1)100﹣(﹣1)107的结果为.12.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=.13.若x3m﹣1y3与﹣x5y2n+1是同类项,则5m﹣3n=.14.已知|x|=3,|y|=7,x<y,则x+y=.15.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,An.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.三、解答题(本大题共5个小题,共50分,请将答案写在答题卡上)16.(20分)计算:(1)20+(﹣14)﹣(﹣18)﹣13;(2)﹣2;(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)(5)﹣14﹣(1﹣0.5)×17.(10分)(1)先化简,再求值:(2x2+x﹣1)﹣[4x2+(5﹣x2+x)],其中x=﹣3.(2)已知A=5x2﹣2xy﹣2y2,B=x2﹣2xy﹣y2,其中x=,y=﹣,求A﹣B的值.18.(6分)如图所示是长方体的平面展开图,设AB=x,若AD=4x,AN=3x.(1)求长方形DEFG的周长与长方形ABMN的周长(用字母x进行表示);(2)若长方形DEFG的周长比长方形ABMN的周长少8,求x的值;(3)在第(2)问的条件下,求原长方体的容积.19.(7分)在东西向的马路上有一个巡岗亭A,巡岗员甲从岗亭A出发以13km第一次第二次第三次第四次第五次第六次第七次4﹣53﹣4﹣36﹣1(1)求第六次结束时甲的位置(在岗亭A的东边还是西边?距离多远?)(2)在第几次结束时距岗亭A最远?距离A多远?(3)巡逻过程中配置无线对讲机,并一直与留守在岗亭A的乙进行通话,问在甲巡逻过程中,甲与乙的保持通话时长共多少小时?20.(7分)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离为|4﹣1|=;表示5和﹣2两点之间的距离为|5﹣(﹣2)|=|5+2|=;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣2的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a=时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为.一、填空题(本大题共5个小题,每小题4分,共20分,请将答案写在答题卡上)21.若m2﹣2mn=6,2mn﹣n2=3,则m2﹣n2=.22.有理数a,b,c在数轴上的位置如图所示,化简|a+b﹣c|﹣|c﹣b|+2|a+c|=.23.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是.24.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第次移动到的点到原点的距离为2018.25.为了求1+2+22+23+…+2100的值,可令m=1+2+22+23+…+2100,则2m=2+22+23+…+2101,因此,2m﹣m=2101﹣1,所以m=2101﹣1.仿照以上推理计算:1+3+32+33+…+3100的值二、解答题(本小题共三个小题,共30分,请将答案写在答题卡上)26.(8分)有这样一道题:“当x=﹣2015,y=2016时,求多项式7x3﹣6x3y+3(x2y+x3+2x3y)﹣(3x2y+10x3)的值”.有一位同学看到x,y的值就怕了,这么大的数怎么算啊?真的有这么难吗?你能用简便的方法帮他解决这个问题,是吗?27.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?28.(12分)某市有甲、乙两种出租车,他们的服务质量相同.甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费1.7元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x千米.(1)当x=5时,请分别求出乘坐甲、乙两种出租车的费用;(2)若某人乘坐的路程大于3千米,试解答下列问题:①计算此人分别乘坐甲、乙出租车所需要的费用(用含x的式子表示);②请帮他规划一下乘坐哪种车较合算?
2018-2019学年四川省成都市简阳市镇金学区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,请将答案写在答题卡上)1.在﹣1,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有()A.2个 B.3个 C.4个 D.5个【分析】根据正数与负数的定义求解.【解答】解:在﹣1,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数有﹣1、﹣10、﹣|+3|这3个,故选:B.【点评】本题考查了正数和负数:在以前学过的0以外的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号.2.为了加快4G网络建设,我市电信运营企业将根据各自发展规划,今年预计完成4A.3.93×103 B.3.93×105 C.3.93×107 D.3.93×【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将39300000用科学记数法表示为:3.93×107.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.若(x﹣2)2与|5+y|互为相反数,则yx的值()A.2 B.﹣10 C.10 【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:∵(x﹣2)2与|5+y|互为相反数,∴(x﹣2)2+|5+y|=0,∴x﹣2=0,5+y=0,解得x=2,y=﹣5,所以,yx=(﹣5)2=25.故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.如图,数轴的单位长度为1,若点A和点C所表示的两个数的绝对值相等,则点B表示的数是()A.﹣3 B.﹣1 C.1 【分析】找到AC的中点,即为原点,进而看B的原点的哪边,距离原点几个单位即可.【解答】解:因为AC的中点为O,所以点C表示的数是﹣3,所以点B表示的数是﹣1.故选:B.【点评】考查数轴上点的确定;找到原点的位置是解决本题的关键;用到的知识点为:两个数的绝对值相等,那么这两个数距离原点的距离相等.5.下列各式运算正确的是()A.2(a﹣1)=2a﹣1 B.a2b﹣ab2=0C.a2+a2=2a2 D.2a3﹣3a3【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a﹣B、原式不能合并,不符合题意;C、原式=2a2D、原式=﹣a3,不符合题意,故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A. B. C. D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【解答】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选:B.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.7.下列说法中,正确的是()A.若x2=y2,则x=y B.若|x|=|y|,则x=y C.若x>|y|,则x>y D.若|x|>|y|,则x>y【分析】根据绝对值性质和有理数乘方逐一判断即可得.【解答】解:A、若x2=y2,则x=y或x=﹣y,此选项错误;B、若|x|=|y|,则x=y或x=﹣y,此选项错误;C、若x>|y|,则x>y,此选项正确;D、若|x|>|y|,则x>y或x<y,此选项错误;故选:C.【点评】本题主要考查有理数的乘方,解题的关键是掌握有理数乘方的运算法则和绝对值性质.8.下列说法,正确的有()(1)整数和分数统称为有理数;(2)符号不同的两个数叫做互为相反数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.A.1个 B.2个 C.3个 D.4个【分析】根据有理数的分类、绝对值的性质、互为相反数的定义、立方的意义一一判断即可;【解答】解:(1)整数和分数统称为有理数;正确.(2)符号不同的两个数叫做互为相反数;错误,比如2,﹣4符号不同,不是互为相反数.(3)一个数的绝对值一定为正数;错误,0的绝对值是0.(4)立方等于本身的数是1和﹣1.错误0的立方等于本身,故选:A.【点评】本题考查有理数的分类、绝对值的性质、互为相反数的定义、立方的意义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,将小正方体切去一个角后再展开,其平面展开图正确的是()A. B. C. D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:观察图形可知,将小正方体切去一个角后再展开,其平面展开图正确的是.故选:D.【点评】此题考查的知识点是几何体的展开图,关键是解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.4【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.二、填空题(本大题共4个小题,每小题4分,共16分,请将答案写在答题卡上)11.计算(﹣1)100﹣(﹣1)107的结果为2.【分析】原式利用乘方的意义计算即可求出值.【解答】解:原式=1﹣(﹣1)=1+1=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=﹣2.【分析】先根据题意确定a、b、c、d、e的值,再把它们的值代入代数式求值即可.【解答】解:∵a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,∴a=1,b=0,c=0,d=﹣2,e=﹣1,∴a+b+c+d+e=1+0+0﹣2﹣1=﹣2.故答案为:﹣2.【点评】本题主要考查的是有理数的相关知识.最小的正整数是1,绝对值最小的有理数是0,相反数等于它本身的数是0,最大的负整数是﹣1.13.若x3m﹣1y3与﹣x5y2n+1是同类项,则5m﹣3n=7.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【解答】解:根据题意,得解得:,5m﹣3n=10﹣故答案为:7.【点评】本题考查了同类项的定义,解决本题的关键是明确同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.14.已知|x|=3,|y|=7,x<y,则x+y=10或4.【分析】根据绝对值的定义,求出x、y的值,计算即可;【解答】解:∵|x|=3,|y|=7,∴x=±3,y=±7,∵x<y,∴x=3,y=7或x=﹣3,y=7,∴x+y=10或4,故答案为10或4.【点评】本题考查绝对值、有理数的加法等知识,解题的关键是判断出x、y的值是解决问题的关键.15.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,An.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是﹣1.【分析】先根据已知求出各个数,根据求出的数得出规律,即可得出答案.【解答】解:∵点A1在数轴表示的数是,∴A2==2,A3==﹣1,A4==,A5==2,A6=﹣1,…,2016÷3=672,所有点A2016在数轴上表示的数是﹣1,故答案为:﹣1.【点评】本题考查了数轴和有理数的计算,能根据求出的结果得出规律是解此题的关键.三、解答题(本大题共5个小题,共50分,请将答案写在答题卡上)16.(20分)计算:(1)20+(﹣14)﹣(﹣18)﹣13;(2)﹣2;(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)(5)﹣14﹣(1﹣0.5)×【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用减法法则变形,计算即可求出值;(3)原式先计算乘除运算,再计算加减运算即可求出值;(4)原式逆用乘法分配律计算即可求出值;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=20+18+(﹣14)+(﹣13)=11;(2)原式=﹣2﹣﹣3+1=﹣5;(3)原式=35+6=41;(4)原式=﹣3×(﹣120﹣7+37)=﹣×(﹣90)=350;(5)原式=﹣1﹣××(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(10分)(1)先化简,再求值:(2x2+x﹣1)﹣[4x2+(5﹣x2+x)],其中x=﹣3.(2)已知A=5x2﹣2xy﹣2y2,B=x2﹣2xy﹣y2,其中x=,y=﹣,求A﹣B的值.【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)把A与B代入原式,去括号合并得到最简结果,再将x与y的值代入计算即可求出值.【解答】解:(1)原式=2x2+x﹣1﹣4x2﹣5+x2﹣x=﹣x2﹣6,当x=﹣3时,原式=﹣9﹣6=﹣15;(2)∵A=5x2﹣2xy﹣2y2,B=x2﹣2xy﹣y2,∴A﹣B=x2﹣xy﹣y2﹣x2+2xy+y2=x2+xy,当x=,y=﹣时,原式=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.(6分)如图所示是长方体的平面展开图,设AB=x,若AD=4x,AN=3x.(1)求长方形DEFG的周长与长方形ABMN的周长(用字母x进行表示);(2)若长方形DEFG的周长比长方形ABMN的周长少8,求x的值;(3)在第(2)问的条件下,求原长方体的容积.【分析】(1)根据AB=x,若AD=4x,AN=3x,即可得到长方形DEFG的周长与长方形ABMN的周长;(2)根据长方形DEFG的周长比长方形ABMN的周长少8,得到方程,即可得到x的值;(3)根据原长方体的容积为x•2x•3x=6x3,代入x的值即可得到原长方体的容积.【解答】解:(1)∵AB=x,若AD=4x,AN=3x,∴长方形DEFG的周长为2(x+2x)=6x,长方形ABMN的周长为2(x+3x)=8x;(2)依题意,8x﹣6x=8,解得:x=4;(3)原长方体的容积为x•2x•3x=6x3,将x=4代入,可得容积6x3=384.【点评】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.19.(7分)在东西向的马路上有一个巡岗亭A,巡岗员甲从岗亭A出发以13km第一次第二次第三次第四次第五次第六次第七次4﹣53﹣4﹣36﹣1(1)求第六次结束时甲的位置(在岗亭A的东边还是西边?距离多远?)(2)在第几次结束时距岗亭A最远?距离A多远?(3)巡逻过程中配置无线对讲机,并一直与留守在岗亭A的乙进行通话,问在甲巡逻过程中,甲与乙的保持通话时长共多少小时?【分析】(1)把前面6次记录相加,根据和的情况判断第六次结束时甲的位置即可;(2)求出每次记录时距岗亭A的距离,数值最大的为最远的距离;(3)求出所有记录的绝对值的和,再除以13计算即可得解.【解答】解:(1)4+(﹣5)+3+(﹣4)+(﹣3)+6=1(km).答:在岗亭A东边1km(2)第一次4km第二次4+(﹣5)=﹣1(km);第三次﹣1+3=2(km);第四次2+(﹣4)=﹣2(km);第五次﹣2+(﹣3)=﹣5(km);第六次﹣5+6=1(km);第七次1+(﹣1)=0(km);故在第五次记录时距岗亭A最远,距离A5km(3)|4|+|﹣5|+|3|+|﹣4|+|﹣3|+|6|+|﹣1|=26(km),26÷13=2(小时).答:在甲巡逻过程中,甲与乙的保持通话时长共2小时.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.20.(7分)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离为|4﹣1|=3;表示5和﹣2两点之间的距离为|5﹣(﹣2)|=|5+2|=7;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣2的两点之间的距离是3,那么a=﹣5或1.(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a=1时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为9.【分析】(1)利用绝对值的意义计算|4﹣1|和|5+2|的值,利用绝对值的意义得到a+2=±3,然后解关于a的方程即可;(2)利用﹣4<a<2去绝对值得到|a+4|+|a﹣2|=a+4﹣a+2,然后合并即可;(3)把|a+5|+|a﹣1|+|a﹣4|理解为点a表示的点分别到数﹣5、1、4表示的点的距离之和,从而得到数a表示的点与数1表示的点重合时,|a+5|+|a﹣1|+|a﹣4|的值最小,然后把a=1代入计算最小值.【解答】解:(1)|4﹣1|=3,|5﹣(﹣2)|=|5+2|=7,|a+2|=3,则a+2=±3,解得a=﹣5或1;故答案为3;5;﹣5或1(2)∵数轴上表示数a的点位于﹣4和2之间,∴|a+4|+|a﹣2|=a+4﹣a+2=6;(3)当a=1时,|a+5|+|a﹣1|+|a﹣4|=6+0+3=9.故当a=1时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为9.故答案为1,9.【点评】本题考查了数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.也考查了绝对值的意义.一、填空题(本大题共5个小题,每小题4分,共20分,请将答案写在答题卡上)21.若m2﹣2mn=6,2mn﹣n2=3,则m2﹣n2=9.【分析】此题涉及整式的加减综合运用,解答时可将两个多项式相加,即可得出m2﹣n2的值.【解答】解:∵m2﹣2mn=6∴m2=6+2mn∵2mn﹣n2=3∴n2=﹣3+2mn∴m2﹣n2=(6+2mn)﹣(﹣3+2mn)=6+2mn+3﹣2mn=9【点评】此题考查的是整式的加减,解决此类题目的关键是熟练掌握整式的变化,从而计算得出答案.22.有理数a,b,c在数轴上的位置如图所示,化简|a+b﹣c|﹣|c﹣b|+2|a+c|=﹣3a﹣2c【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:a<b<0<c,且|b|<|c|<|a|,∴a+b﹣c<0,c﹣b>0,a+c<0,则原式=﹣a﹣b+c﹣c+b﹣2a﹣2c=﹣3a故答案为:﹣3a﹣【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.23.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是我.【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【解答】解:由图1可得,“中”和“的”相对;“国”和“我”相对;“梦”和“梦”相对;由图2可得,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格时,“国”在下面,则这时小正方体朝上一面的字是“我”.故答案为:我.【点评】本题以小立方体的侧面展开图为背景,考查学生对立体图形展开图的认识.考查了学生空间想象能力.24.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第1345次移动到的点到原点的距离为2018.【分析】根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对奇数项、偶数项分别探究,找出其中的规律(相邻两数都相差3),写出表达式就可解决问题.【解答】解:第1次点A向左移动3个单位长度至点B,则B表示的数,1﹣3=﹣2;第2次从点B向右移动6个单位长度至点C,则C表示的数为﹣2+6=4;第3次从点C向左移动9个单位长度至点D,则D表示的数为4﹣9=﹣5;第4次从点D向右移动12个单位长度至点E,则点E表示的数为﹣5+12=7;第5次从点E向左移动15个单位长度至点F,则F表示的数为7﹣15=﹣8;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:﹣(3n+1),当移动次数为偶数时,点在数轴上所表示的数满足:(3n+2),当移动次数为奇数时,﹣(3n+1)=﹣2018,n=1345,当移动次数为偶数时,(3n+2)=2018,n=(不合题意).故答案为:1345.【点评】本题考查了数轴,以及用正负数可以表示具有相反意义的量,还考查了数轴上点的坐标变化和平移规律(左减右加),考查了一列数的规律探究.对这列数的奇数项、偶数项分别进行探究是解决这道题的关键.25.为了求1+2+22+23+…+2100的值,可令m=1+2+22+23+…+2100,则2m=2+22+23+…+2101,因此,2m﹣m=2101﹣1,所以m=2101﹣1.仿照以上推理计算:1+3+32+33+…+3100的值【分析】仿照题中的方法求出原式的值即可.【解答】解:令m=1+3+32+33+…+3100,则有3m=3+32+33+…+3101因此2m=3101﹣1,所以m=,则1+3+32+33+…+3100=,故答案为:【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、解答题(本小题共三个小题,共30分,请将答案写在答题卡上)26.(8分)有这样一道题:“当x=﹣2015,y=2016时,求多项式7x3﹣6x3y+3(x2y+x3+2x3y)﹣(3x2y+10x3)的值”.有一位同学看到x,y的值就怕了,这么大的数怎么算啊?真的有这么难吗?你能用简便的方法帮他解决这个问题,是吗?【分析】去括号、合并同类项即可得.【解答】解:原式=7x3﹣6x3y+3x2y+3x3+6x3y﹣3x2y﹣10x3=(7x3+3x3﹣10x3)﹣(6x3y﹣6x3y)+(3x2y﹣3x2y)=0﹣0+0=0,因为所得结果与x、y的值无关,所以无论x、y取何值,多项式的值都是0.【点评】本题考查了整式的加减,合并同类项是解题关键.27.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是﹣4或2;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是﹣2或﹣1或0或1或2或3或4(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?【分析】(1)根据幸福点的定义即可求解;(2)根据幸福中心的定义即可求解;(3)分两种情况列式:①P在B的右边;②P在A的左边讨论;可以得出结论.【解答】解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;(2)4﹣(﹣2)=6,故C所表示的数可以是﹣2或﹣1或0或1或2或3或4;(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.【点评】本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义.28.(12分)某市有甲、乙两种出租车,他们的服务质量相同.甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费1.7元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x千米.(1)当x=5时,请分别求出乘坐甲、乙两种出租车的费用;(2)若某人乘坐的路程大于3千米,试解答下列问题:①计算此人分别乘坐甲、乙出租车所需要的费用(用含x的式子表示);②请帮他规划一下乘坐哪种车较合算?【分析】(1)分别利用两种计费方式计算得出答案;(2)①根据题意直接得出代数式进而得出答案;②利用①中代数式得出相等时x的值,进而得出答案.【解答】解:(1)当x=5时,乘坐甲出租车的费用=10+(5﹣3)×1.2=10+2.4=12.4(元),乘坐乙出租车的费用=8+(5﹣3)×1.7=8+3.4=11.4(元),答:乘坐甲、乙两种出租车的费用分别为12.4元,11.4元.(2)①乘坐甲出租车的费用为:10+1.2(x﹣3),=(1.2x+6.4)元,乘坐乙出租车的费用为:8+1.7(x﹣3)=(1.7x+2.9)元;②∵此人乘坐的路程大于3千米,若1.2x+6.4=1.7x+2.9时,∴x=7,则当x=7时,他乘坐两种出租车所需要的费用一样多;由(1)知,当他乘坐的路程在大于3千米而小于7千米时,坐乙出租车较为合算;取x=8,则乘坐甲出租车所需费用为:1.2×8+6.4=16(元),乘坐乙出租车所需费用为:1.7×8+2.9=16.5(元),当他乘坐的路程大于7千米时,坐甲出租车较为合算.故当他乘坐的路程在大于3千米而小于7千米时,坐乙出租车较为合算;当他乘坐的路程为7千米时,坐两种出租车所需要的费用一样多;当他乘坐的路程大于7千米时,坐甲出租车较为合算.【点评】此题主要考查了代数式求值,正确得出两种计费代数式是解题关键.
人教版七年级第一学期期中模拟数学试卷(含答案)一、选择题(每小题3分,共计36分)1.﹣6的倒数是()A.6 B.﹣6 C. D.﹣2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11000000吨,用科学记数法应记为()A.11×106吨 B.1.1×107吨 C.11×107吨 D.1.1×108吨3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.24.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A. B. C. D.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4 C.7a+3a2=10a3 D.a2+4a2=5a26.下列判断中错误的是()A.1﹣a﹣ab是二次三项式 B.﹣a2b2c是单项式 C.是多项式 D.中,系数是7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个 B.2个 C.3个 D.4个8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.510.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣1211.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.1812.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是.14.a、b互为相反数,c、d互为倒数,则=.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣219.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款元;若客户按方案二购买,需付款元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是.(2)数轴上点A用数a表示,若|a|=5,那么a的值为.(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是.②当|a+2|+|a﹣3|=5时,数a的取值范围是,这样的整数a有个③|a﹣3|+|a+2017|有最小值,最小值是.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?
参考答案一、选择题1.﹣6的倒数是()A.6 B.﹣6 C. D.﹣【分析】根据倒数的定义求解.解:﹣6的倒数是﹣.故选:D.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11000000吨,用科学记数法应记为()A.11×106吨 B.1.1×107吨 C.11×107吨 D.1.1×108吨【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.11000000=1.1×107.解:11000000=1.1×107.故选:B.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动7位,应该为1.1×107.3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.2【分析】把(﹣2)2014写成(﹣2)×(﹣2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.解:(﹣0.5)2013×(﹣2)2014,=(﹣0.5)2013×(﹣2)×(﹣2)2013,=(﹣2)×[(﹣0.5)×(﹣2)]2013,=﹣2×1,=﹣2.故选:C.【点评】本题考查了有理数的乘方,此类题目,转化为同指数幂相乘是解题的关键,也是难点.4.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A. B. C. D.【分析】由平面图形的折叠及正方体的展开图解题.解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选:B.【点评】正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4 C.7a+3a2=10a3 D.a2+4a2=5a2【分析】根据合并同类项的法则,结合选项进行判断即可.解:A、5a3﹣6a3=﹣a3,故本选项错误;B、3a2+4a2=7a2,故本选项错误;C、7a和3a2不是同类项,不能合并,故本选项错误;D、a2+4a2=5a2,故本选项正确;故选:D.【点评】此题考查了合并同类项的知识,属于基础题,关键是掌握合并同类项的法则.6.下列判断中错误的是()A.1﹣a﹣ab是二次三项式 B.﹣a2b2c是单项式 C.是多项式 D.中,系数是【分析】直接利用单项式的系数以及多项式的次数与项数确定方法分别分析得出答案.解:A、1﹣a﹣ab是二次三项式,正确,不合题意;B、﹣a2b2c是单项式,正确,不合题意;C、是多项式,正确,不合题意;D、πr2中,系数是:π,故此选项错误,符合题意.故选:D.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【分析】根据正数和负数的意义,可判断①;根据绝对值的意义,可判断②;根据倒数的意义,可判断③;根据绝对值的性质,可判断④;根据平方的意义,可判断⑤.解:①﹣a可能是负数、零、正数,故①说法错误;②|﹣a|一定是非负数,故②说法错误;③倒数等于它本身的数是±1,故③说法正确;④绝对值等于它本身的数是非负数,故④说法错误;⑤平方等于它本身的数是0或1,故⑤说法错误;故选:A.【点评】本题考查了有理数的乘方,注意0的平方等于0,﹣a不一定是负数,绝对值都是非负数.8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y【分析】根据题意表示另一边的长,进一步表示周长,化简.解:依题意得:周长=2(3x+2y+3x+2y+x﹣y)=14x+6y.故选D.【点评】此题考查了整式的加减,列式表示出长方形的周长是关键.9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.5【分析】先根据有理数的乘方运算法则将各数化简,找到最大的数与最小的数,然后根据有理数的加法法则求得计算结果.解:∵(﹣1)3=﹣1,(﹣1)2=1,﹣22=﹣4,(﹣3)2=9,且﹣4<﹣1<1<9,∴最大的数与最小的数的和等于﹣4+9=5.故选:D.【点评】解决此类题目的关键是熟记有理数的运算法则.10.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12【分析】根据题意,利用绝对值的代数意义,以及有理数的加法法则判断即可.解:∵|x|=7,|y|=5,且x+y>0,∴x=7,y=5;x=7,y=﹣5,则x+y=12或2,故选:A.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.18【分析】先把代数式进行适当的变形,然后直接把已知整式的值代入代数式即可求出代数式的值.解:2x2﹣4x+6=2(x2﹣2x)+6,将x2﹣2x=3代入上面的代数式得,2x2﹣4x+6,=2×3+6,=12,故选:C.【点评】本题主要考查了代数式的求值方法,通车分为三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.12.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5【分析】根据n!=1×2×3×…×n得到1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,且5!、…、10!的数中都含有2与5的积,则5!、…、10!的末尾数都是0,于是得到1!+2!+3!+…+10!的末尾数为3.解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!、…、10!的数中都含有2与5的积,∴5!、…、10!的末尾数都是0,∴1!+2!+3!+…+10!的末尾数为3.故选:C.【点评】本题考查了规律型:数字的变化类:通过特殊数字的变化规律探讨一般情况下的数字变化规律.二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是﹣.【分析】直接利用单项式的系数确定方法分析得出答案.解:单项式﹣y的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.14.a、b互为相反数,c、d互为倒数,则=.【分析】由a、b互为相反数,c、d互为倒数可知a+b=0,cd=1,然后代入求值即可.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=﹣3×0﹣﹣=﹣.故答案为:﹣.【点评】本题主要考查的是有理数的运算,根据题意得到a+b=0,cd=1是解题的关键.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为﹣3.【分析】根据[x]表示不大于x的最大整数,进而得出答案.解:由题意可得:[2.7]+[﹣4.5]=2﹣5=﹣3.故答案为:﹣3.【点评】此题主要考查了新定义,正确理解题意是解题关键.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为4.【分析】把x=1代入数值转换机中计算即可得到结果.解:把x=1代入得:2×12﹣4=2﹣4=﹣2,把x=﹣2代入得:2×(﹣2)2﹣4=8﹣4=4,则输出y的值为4.故答案为:4【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×【分析】(1)根据加法结合律可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(3)先算乘法,再算加减即可解答本题;(4)先算小括号里的,再算中括号里的,最后根据有理数的乘法和减法即可解答本题.解:(1)25.7+(﹣7.3)+(﹣13.7)+7.3=(25.7﹣13.7)+[(﹣7.3)+7.3]=12+0=12;(2)=(﹣)×(﹣36)=18+20+(﹣21)=17;(3)=(﹣1)+﹣1=﹣;(4)﹣14﹣(1﹣0.5)×=﹣1﹣=﹣1﹣×(﹣3)=﹣1+=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣2【分析】根据整式的运算法则即可求出答案.解:原式=3a+2a﹣4a3+a﹣3a3+2a2=6a﹣7a3+2a2当a=﹣2时,原式=6×(﹣2)﹣7×(﹣8)+2×4=﹣12+56+8=52.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?【分析】(1)根据三视图可分别得出俯视图上小立方体的个数;(2)根据(1)可得小正方体的个数为10,然后利用1个小正方体的体积乘以10即可;(3)根据三视图可得该物体的表面有多少个小正方形,然后利用1个小正方形的面积乘以个数即可.解:(1)如图所示:(2)3×3×3×10=270(cm3),答:该物体的体积是270cm3;(3)3×3×38=342(cm2),答:该物体的表面积是342cm2.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.【分析】根据数轴判断出a、b、c的符号,再根据绝对值的性质去掉绝对值符号,合并同类项即可.解:如图可知:a>0,c<0,b<0,且|b|>|c|>|a|,则|c|=﹣c,|a﹣c|=a﹣c,|c+b|=﹣c﹣b,|a+b|=﹣a﹣b,则原式=﹣c+(a﹣c)﹣2(﹣c﹣b)+(﹣a﹣b)=﹣c+a﹣c+2c+2b﹣a﹣b=b.【点评】本题考查了整式的加减、数轴、绝对值,在数轴上判断出字母的符号是解题的关键.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款(100x+8000)元;若客户按方案二购买,需付款(90x+9000)元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意可以得到先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带更合算.解:(1)客户要到该商场购买西装20套,领带x条(x>20).方案一费用:(100x+8000)元;方案二费用:(90x+9000)元;(2)当x=30时,方案一费用:100x+8000=100×30+8000=11000(元);方案二费用:90x+9000=90×30+9000=11700(元);∵11000<11700,∴按方案一购买较合算;(3)先按方案一购买20套西装获赠20条领带,再按方案二购买10条领带.20×500+100×0.9×10=10900(元).故此方案需要付款10900元.【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是5,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是2.(2)数轴上点A用数a表示,若|a|=5,那么a的值为5或﹣5.(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是﹣2或8.②当|a+2|+|a﹣3|=5时,数a的取值范围是﹣2≤a≤3,这样的整数a有6个③|a﹣3|+|a+2017|有最小值,最小值是2020.【分析】(1)根据两点间的距离公式求解可得;(2)根据绝对值的定义可得;(3)①利用绝对值定义知a﹣3=5或﹣5,分别求解可得;②由|a+2|+|a﹣3|=5的意义是表示数轴上到表示﹣2和表示3的点的距离之和是5的点的坐标,据此可得;③由|a﹣3|+|a+2017|表示数轴到表示3与表示﹣2017的点距离之和,根据两点之间线段最短可得.解:(1)数轴上表示数8的点和表示数3的点之间的距离是8﹣3=5,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是﹣1﹣(﹣3)=2,故答案为:5、2.(2)若|a|=5,那么a的值为5或﹣5,故答案为:5或﹣5.(3)数轴上点A用数a表示,①若|a﹣3|=5,则a﹣3=5或a﹣3=﹣5,∴a=8或﹣2,故答案为:﹣2或8.②∵|a+2|+|a﹣3|=5的意义是表示数轴上到表示﹣2和表示3的点的距离之和是5的点的坐标,∴﹣2≤a≤3,其中整数有﹣2,﹣1,0,1,2,3共6个,故答案为:﹣2≤a≤3,6.③|a﹣3|+|a+2017|表示数轴到表示3与表示﹣2017的点距离之和,由两点之间线段最短可知:当﹣2017≤a≤3时,|a﹣3|+|a+2017|有最小值,最小值为2017﹣(﹣3)=2020,故答案为:2020.【点评】本题主要考查的是绝对值的定义的应用,理解并应用绝对值的定义及两点间的距离公式是解题的关键.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?【分析】观察图形发现部分①的面积为:,部分②的面积为:=,…,部分的面积,据此规律解答即可.解:∵观察图形发现部分①的面积为:,部分②的面积为:=,…,部分的面积,∴(1)阴影部分的面积是=;(2)=1﹣=;【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并发现图形变化的规律.
七年级上册数学期中考试试题及答案一、选择题(每小题4分,共40分)1.的绝对值是()A. B. C.2 D.﹣22.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为()A.1.68×104m B.16.8×103m C.0.168×104m D.1.68×103m3.如果收入15元记作+15元,那么支出20元记作()元.A.+5 B.+20 C.﹣5 D.﹣204.已知p与q互为相反数,且p≠0,那么下列关系式正确的是()A.p•q=1 B. C.p+q=0 D.p﹣q=05.在代数式中,单项式有()A.3个 B.4个 C.5个 D.6个6.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣d C.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d7.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0 B.a﹣b>0 C.ab>0 D.a+b>08.下列说法正确的是()A.单项式是整式,整式也是单项式 B.25与x5是同类项 C.单项式的系数是,次数是4 D.是一次二项式9.一个多项式加上5x2﹣4x﹣3得﹣x2﹣3x,则这个多项式为()A.4x2﹣7x﹣3 B.6x2﹣x﹣3 C.﹣6x2+x+3 D.﹣6x2﹣7x﹣310.已知a、b互为相反数,c、d互为倒数,x等于﹣4的2次方,则式子(cd﹣a﹣b)x﹣x的值为()A.2 B.4 C.﹣8 D.8二、填空题(每小题5分,共20分)11.写出一个比小的整数:.12.已知甲地的海拔高度是300m,乙地的海拔高度是﹣50m,那么甲地比乙地高m.13.若3am﹣1bc2和﹣2a3bn﹣2c2是同类项,则m+n=.14.小方利用计算机设计了一个计算程序,输入和输出的数据如下表:输入…12345…输出……那么,当输入数据为8时,输出的数据为.三、本大题共2小题,每小题8分,满分16分15.(8分)计算(1)(1﹣)×(﹣48)(2)(﹣1)10×2+(﹣2)3÷4.16.(8分)计算(1)﹣14﹣(1﹣0.5)×(2)﹣32﹣四、本大题共2小题,每小题8分,满分16分17.(8分)先化简,再求值:3x2y﹣[2xy2﹣2(xy﹣1.5x2y)+xy]+3xy2,其中x=﹣3,y=﹣2.18.(8分)由若干个小立方体所组成的一个几何体,其俯视图如图所示.其中的数字表示在该位置上的小立方体的个数.请画出这个几何体从正面看和从左面看的图形.五、本大题共2小题,每小题10分,满分20分19.(10分)若3ambc2和﹣2a3bnc2是同类项,求3m2n﹣[2mn2﹣2(m2n+2mn2)]的值.20.(10分)根据图中所示,写出阴影部分的面积S的公式(四边形ABFE是梯形),并求当R=2时,S的值是多少?(π取3)六、本题满分12分21.(12分)某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米1.3元;超过5千米,每千米2.4元.(1)若某人乘坐了x(x>5)千米的路程,则他应支付的费用是多少?(2)若某人乘坐的路程为6千米,那么他应支付的费用是多少?七、本题满分12分22.(12分)观察下列等式:=1﹣,=,=将以上三个等式两边分别相加得:++=1﹣++=1﹣(1)猜想并写出:=;(2)直接写出下列各式的计算结果:①++=;②+++…+=;(3)探究并计算:++=.八、本题满分14分23.(14分)某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套.如果每套比原销售价降低10元销售,则每天可多销售100套.该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价﹣每套西服的进价).(1)按原销售价销售,每天可获利润元.(2)若每套降低10元销售,每天可获利润元.(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套.按这种方式:①若每套降低10x元,则每套的销售价格为元;(用代数式表示)②若每套降低10x元,则每天可销售套西服.(用代数式表示)③若每套降低10x元,则每天共可以获利润元.(用代数式表示)
参考答案一、选择题1.的绝对值是()A. B. C.2 D.﹣2【分析】根据负数的绝对值等于它的相反数解答.解:﹣的绝对值是.故选:A.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为()A.1.68×104m B.16.8×103m C.0.168×104m D.1.68×103m【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将16800用科学记数法表示为1.68×104.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如果收入15元记作+15元,那么支出20元记作()元.A.+5 B.+20 C.﹣5 D.﹣20【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作﹣20元.故选:D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.4.已知p与q互为相反数,且p≠0,那么下列关系式正确的是()A.p•q=1 B. C.p+q=0 D.p﹣q=0【分析】根据互为相反数的性质:两数互为相反数,它们的和为0.解:根据互为相反数的性质,得p+q=0.故选:C.【点评】本题考查了相反数的性质:两数互为相反数,它们的和为0.5.在代数式中,单项式有()A.3个 B.4个 C.5个 D.6个【分析】根据单项式和多项式的定义来解答.解:代数式中,单项式有,﹣abc,0,﹣5,;多项式有x﹣y;分式有.故选C.【点评】解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.单项式:数和字母的积叫单项式;多项式:几个单项式的和叫多项式.6.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣d C.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反判断即可.解:A、a+(b+c﹣d)=a+b+c﹣d,故本选项正确;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故本选项正确;C、a﹣b﹣(c﹣d)=a﹣b﹣c+d,故本选项错误;D、a+b﹣(﹣c﹣d)=a+b+c+d,故本选项正确;故选:C.【点评】本题考查了去括号法则,解题时牢记法则是关键,特别要注意符号的变化.7.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0 B.a﹣b>0 C.ab>0 D.a+b>0【分析】由数轴可知:a<﹣1<0<b<1,再根据不等式的基本性质即可判定谁正确.解:∵a<﹣1<0<b<1,A、∴b﹣a>0,故本选项正确;B、a﹣b<0;故本选项错误;C、ab<0;故本选项错误;D、a+b<0;故本选项错误.故选:A.【点评】主要考查了数轴上数的大小比较和不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.下列说法正确的是()A.单项式是整式,整式也是单项式 B.25与x5是同类项 C.单项式的系数是,次数是4 D.是一次二项式【分析】根据整式、同类项、单项式和多项式的概念,紧扣概念逐一作出判断.解;A、整式包括单项式和多项式,所以单项式是整式,但整式不一定是单项式,故本选项错误;B、25与x5指数相同,但底数不同,故本选项错误;C、单项式的系数是,次数是4,正确;D、中的不是整式,故本选项错误.故选:C.【点评】主要考查了整式的有关概念.要正确掌握整式、同类项、单项式和多项式的概念.9.一个多项式加上5x2﹣4x﹣3得﹣x2﹣3x,则这个多项式为()A.4x2﹣7x﹣3 B.6x2﹣x﹣3 C.﹣6x2+x+3 D.﹣6x2﹣7x﹣3【分析】本题涉及添括号和去括号法则、合并同类项两个考点,解答时根据每个考点作出回答.根据已知条件可设此多项式为M建立等式解得即可.解:设这个多项式为M,则M=(﹣x2﹣3x)﹣(5x2﹣4x﹣3)=﹣x2﹣3x﹣5x2+4x+3=﹣6x2+x+3.故选:C.【点评】解决此类题目的关键是熟记添括号和去括号法则,熟练运用合并同类项的法则.括号前添负号,括号里的各项要变号.合并同类项的时候,字母应平移下来,只对系数相加减.10.已知a、b互为相反数,c、d互为倒数,x等于﹣4的2次方,则式子(cd﹣a﹣b)x﹣x的值为()A.2 B.4 C.﹣8 D.8【分析】利用相反数,倒数,以及平方根定义求出a+b,cd以及c的值,代入原式计算即可得到结果.解:根据题意得:a+b=0,cd=1,x=16,则原式=[cd﹣(a+b)]x﹣x=16﹣8=8.故选:D.【点评】此题考查了代数式求值,相反数,倒数,以及有理数的乘方,熟练掌握运算法则是解本题的关键.二、填空题(本大题共4小题,每小题5分,共20分)11.写出一个比小的整数:﹣1等.【分析】找一个绝对值大于的负数即可.解:∵﹣1<﹣,故答案可为﹣1等.本题答案不唯一.【点评】考查有理数的比较的知识;用到的知识点为:两个负数,绝对值大的反而小.12.已知甲地的海拔高度是300m,乙地的海拔高度是﹣50m,那么甲地比乙地高350m.【分析】认真阅读列出正确的算式,用甲地高度减去乙地高度,列式计算.解:依题意得:300﹣(﹣50)=350m.【点评】有理数运算的实际应用题是中考的常见题,其解答关键是依据题意正确地列出算式.13.若3am﹣1bc2和﹣2a3bn﹣2c2是同类项,则m+n=7.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求得m,n的值,代入求解即可.解:∵3am﹣1bc2和﹣2a3bn﹣2c2是同类项,∴m﹣1=3,n﹣2=1,∴m=4,n=3,则m+n=7.故答案为:7.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.小方利用计算机设计了一个计算程序,输入和输出的数据如下表:输入…12345…输出……那么,当输入数据为8时,输出的数据为.【分析】根据题意找出一般性规律,写出即可.解:根据题意得:当输入的数据是n时,输出的数据为,则当输入的数据是8时,输出的数据为=,故答案为:【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三、本大题共2小题,每小题8分,满分16分15.(8分)计算(1)(1﹣)×(﹣48)(2)(﹣1)10×2+(﹣2)3÷4.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 翻转课堂在小学音乐教学中的创新实践课题报告教学研究课题报告
- 2025年泉州工程职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2024年长江大学文理学院马克思主义基本原理概论期末考试真题汇编
- 2025年外交学院马克思主义基本原理概论期末考试模拟试卷
- 2024年防灾科技学院马克思主义基本原理概论期末考试笔试题库
- 2024年天津医科大学马克思主义基本原理概论期末考试真题汇编
- 2025年绍兴职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2024年北京京北职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2024年安徽国防科技职业学院马克思主义基本原理概论期末考试笔试题库
- 2025年贵阳幼儿师范高等专科学校马克思主义基本原理概论期末考试笔试真题汇编
- 《寻找时传祥》课件
- GB/T 28570-2025水轮发电机组状态在线监测系统技术导则
- 安全质量组织机构及各岗位职责
- 30个中医针灸临床病历
- 企业社会责任实践与品牌建设策略
- 现代摄影工作室办公设计方案
- 库房婚庆道具管理办法
- 智能制造职业技能培训教学计划
- 机电安装工程师中级职称论文范文
- 应急装备与技术课件
- 小学“十五五”发展规划
评论
0/150
提交评论