版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市三原南郊中学2026届数学高二上期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从装有2个红球和2个白球的口袋内任取两个球,则下列选项中的两个事件为互斥事件的是()A.至多有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;都是红球 D.至多有1个白球;至多有1个红球2.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A.﹣9 B.﹣3C.9 D.153.已知等比数列的各项均为正数,且,则()A. B.C. D.4.复数,则对应的点所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知过点的直线l与圆相交于A,B两点,则的取值范围是()A. B.C. D.6.在直角坐标系中,直线的倾斜角是A.30° B.60°C.120° D.150°7.椭圆上的点P到直线x+2y-9=0的最短距离为()A. B.C. D.8.设函数是定义在上的奇函数,且,当时,有恒成立.则不等式的解集为()A. B.C. D.9.某学校要从5名男教师和3名女教师中随机选出3人去支教,则抽取的3人中,女教师最多为1人的选法种数为()A.10 B.30C.40 D.4610.数列,,,,…,的通项公式可能是()A. B.C. D.11.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm),则此构件的表面积为()A. B.C. D.12.在等差数列中,,则()A.6 B.3C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知空间向量,,则向量在向量上的投影向量的坐标是___________.14.已知曲线在处的切线方程为,则________15.已知正方体的棱长为为的中点,为面内一点.若点到面的距离与到直线的距离相等,则三棱锥体积的最小值为__________16.设函数为奇函数,当时,,则_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆.(1)过点作圆的切线,求切线的方程;(2)若直线过点且被圆截得的弦长为2,求直线的方程.18.(12分)在数列中,,,(1)设,证明:数列是等差数列;(2)求数列的前项和.19.(12分)已知二次曲线的方程:(1)分别求出方程表示椭圆和双曲线的条件;(2)若双曲线与直线有公共点且实轴最长,求双曲线方程;(3)为正整数,且,是否存在两条曲线,其交点P与点满足,若存在,求的值;若不存在,说明理由20.(12分)在平面直角坐标系中,已知菱形的顶点和所在直线的方程为.(1)求对角线所在直线的一般方程;(2)求所在直线的一般方程.21.(12分)已知p:关于x的方程至多有一个实数解,.(1)若命题p为真命题,求实数a的取值范围;(2)若p是q的充分不必要条件,求实数m的取值范围.22.(10分)设函数过点(1)求函数的单调区间和极值(要列表);(2)求函数在上的最大值和最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据试验过程进行分析,利用互斥事件的定义对四个选项一一判断即可.【详解】对于A:“至多有1个白球”包含都是红球和一红一白,“都是红球”包含都是红球,所以“至多有1个白球”与“都是红球”不是互斥事件.故A错误;对于B:“至少有1个白球”包含都是白球和一红一白,“至少有1个红球”包含都是红球和一红一白,所以“至少有1个白球”与“至少有1个红球”不是互斥事件.故B错误;对于C:“恰好有1个白球”包含一红一白,“都是红球”包含都是红球,所以“恰好有1个白球”与“都是红球”是互斥事件.故C错误;对于D:“至多有1个红球”包含都是白球和一红一白,“至多有1个白球”包含都是红球和一红一白,所以“至多有1个白球”与“至多有1个红球”不是互斥事件.故D错误.故选:C2、C【解析】y′=3x2,则y′|x=1=3,所以曲线在P点处的切线方程为y-12=3(x-1)即y=3x+9,它在y轴上的截距为9.3、B【解析】利用对数的运算性质,结合等比数列的性质可求得结果.【详解】是各项均为正数的等比数列,,,,.故选:B4、C【解析】化简复数,根据复数的几何意义,即可求解.【详解】由题意,复数,所以复数对应的点为位于第三象限.故选:C.5、D【解析】经判断点在圆内,与半径相连,所以与垂直时弦长最短,最长为直径【详解】将代入圆方程得:,所以点在圆内,连接,当时,弦长最短,,所以弦长,当过圆心时,最长等于直径8,所以的取值范围是故选:D6、D【解析】根据直线方程得到直线的斜率后可得直线的倾斜角.【详解】设直线的倾斜角为,则,因,故,故选D.【点睛】直线的斜率与倾斜角的关系是:,当时,直线的斜率不存在,注意倾斜角的范围.7、A【解析】与已知直线平行,与椭圆相切的直线有二条,一条距离最短,一条距离最长,利用相切,求出直线的常数项,再计算平行线间的距离即可.【详解】设与已知直线平行,与椭圆相切的直线为,则所以所以椭圆上点P到直线的最短距离为故选:A8、B【解析】根据当时,可知在上单调递减,结合可确定在上的解集;根据奇偶性可确定在上的解集;由此可确定结果.【详解】,当时,,在上单调递减,,,在上的解集为,即在上的解集为;又为上的奇函数,,为上的偶函数,在上的解集为,即在上的解集为;当时,,不合题意;综上所述:的解集为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题,关键是能够通过构造函数的方式,确定所构造函数的单调性和奇偶性,进而根据零点确定不等式的解集.9、C【解析】可分为女教师0人,男教师3人和女教师1人,男教师2人两种情况,用组合数表示计算即得解【详解】女教师最多为1人即女教师为0人或者1人若女教师为0人,则男教师有3人,有种选择;若女教师为1人,则男教师2人,有种选择;故女教师最多为1人的选法种数为种故选:C10、D【解析】利用数列前几项排除A、B、C,即可得解;【详解】解:由,排除A,C,由,排除B,分母为奇数列,分子为,故数列的通项公式可以为,故选:D11、B【解析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.12、B【解析】根据等差数列下标性质进行求解即可.【详解】因为是等差数列,所以,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据投影向量的计算公式,计算出正确答案.【详解】向量在向量上的投影向量的坐标是.故答案为:14、1【解析】先求导,由,代入即得解【详解】由题意,故答案为:115、##【解析】由题意可知,点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面建立平面直角坐标系,求出抛物线方程,直线的方程,将直线向抛物线平移,恰好与抛物线相切时,切点为点,此时的面积最小,则三棱锥体积的最小【详解】因为为面内一点,且点到面的距离与到直线的距离相等,所以点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面,以所在的直线为轴,以的中垂线为轴建立平面直角坐标系,则,设抛物线方程为,则,得,所以抛物线方程为,,直线的方程为,即,设与直线平行且与抛物线相切的直线方程为,由,得,由,得,所以与抛物线相切的直线为,此时切点为,且的面积最小,因为点到直线的距离为,所以的面积的最小值为,所以三棱锥体积的最小值为,故答案为:16、【解析】由奇函数的定义可得,代入解析式即可得解.【详解】函数为奇函数,当时,,所以.故答案为-1.【点睛】本题主要考查了奇函数的求值问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据直线与圆相切,求得切线的斜率,利用点斜式即可写出切线方程;(2)利用弦长公式,结合已知条件求得直线的斜率,即可求得直线方程.【小问1详解】圆,圆心,半径,又点的坐标满足圆方程,故可得点在圆上,则切线斜率满足,又,故满足题意的切线斜率,则过点的切线方程为,即.【小问2详解】直线过点,若斜率不存在,此时直线的方程为,将其代入可得或,故直线截圆所得弦长为满足题意;若斜率存在时,设直线方程为,则圆心到直线的距离,由弦长公式可得:,解得,也即,解得,则此时直线的方程为:.综上所述,直线的方程为或.18、(1)略(2)【解析】(1)题中条件,而要证明的是数列是等差数列,因此需将条件中所给的的递推公式转化为的递推公式:,从而,,进而得证;(2)由(1)可得,,因此数列的通项公式可以看成一个等差数列与等比数列的乘积,故可考虑采用错位相减法求其前项和,即有:①,①得:②,②-①得.试题解析:(1)∵,,又∵,∴,,∴则是为首项为公差的等差数列;由(1)得,∴,∴①,①得:②,②-①得.考点:1.数列的通项公式;2.错位相减法求数列的和.19、(1)时,方程表示椭圆,时,方程表示双曲线;(2);(3)存在,且或或.【解析】(1)当且仅当分母都为正,且不相等时,方程表示椭圆;当且仅当分母异号时,方程表示双曲线(2)将直线与曲线联立化简得:,利用双曲线与直线有公共点,可确定的范围,从而可求双曲线的实轴,进而可得双曲线方程;(3)由(1)知,,是椭圆,,,,是双曲线,结合图象的几何性质,任意两椭圆之间无公共点,任意两双曲线之间无公共点,从而可求【详解】(1)当且仅当时,方程表示椭圆;当且仅当时,方程表示双曲线(2)化简得:△或所以双曲线的实轴为,当时,双曲线实轴最长为此时双曲线方程为(3)由(1)知,,是椭圆,,,,是双曲线,结合图象的几何性质任意两椭圆之间无公共点,任意两双曲线之间无公共点设,,,2,,,6,7,由椭圆与双曲线定义及;所以所以这样的,存在,且或或【点睛】方法点睛:曲线方程的确定可分为两类:若已知曲线类型,则采用待定系数法;若曲线类型未知时,则可利用直接法、定义法、相关点法等求解或者利用分类讨论思想求解.20、(1)(2)【解析】(1)首先求的中点,再利用垂直关系求直线的斜率,即可求解;(2)首先求点的坐标,再求直线的斜率,求得直线的斜率,利用点斜式直线方程,即可求解.【小问1详解】由和得:中点四边形为菱形,,且中点,对角线所在直线方程为:,即:.【小问2详解】由,解得:,,,,直线的方程为:,即:.21、(1)(2)【解析】(1)根据命题p为真命题,可得,解之即可得解;(2)若p是q的充分不必要条件,则,列出不等式组,解之即可得出答案.【小问1详解】解:命题p:关于x的方程至多有一个实数解,∴,解得,∴实数a的取值范围是;【小问2详解】解:命题,∵p是q的充分不必要条件,∴,∴,且两式等号不能同时取得,解得,∴实数m的取值范围是.22、(1)增区间,,减区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省枣强县枣强中学2026届英语高三上期末教学质量检测试题含解析
- 2026届云南省砚山县第二中学高二数学第一学期期末学业质量监测模拟试题含解析
- 第5章-功能指令-数据处理指令
- 山东省曹县三桐中学2026届数学高二上期末质量检测试题含解析
- 2026年山东土地东方发展集团有限公司招聘备考题库完整参考答案详解
- 2026年南平市建阳区治安巡防大队公开招聘队员备考题库及一套参考答案详解
- 2026年惠州市第六人民医院招聘备考题库有答案详解
- 2026年国投金城冶金有限责任公司招聘备考题库及参考答案详解
- 2026年大连理工大学化工学院党群办公室职员(自聘)招聘备考题库有答案详解
- 2026年广东水电二局股份有限公司招聘备考题库含答案详解
- 脓毒症免疫功能紊乱
- 广东江南理工高级技工学校
- 斜弱视眼科学
- 电商平台需求规格说明书-通用版本
- 眼底荧光造影护理配合
- 2023年电大会计本人力资源管理复习资料
- GB/T 25146-2010工业设备化学清洗质量验收规范
- 相关控规-申花单元
- 90万吨煤矿人员配备
- 酒精度检测原始记录
- 中国私募基金募集与运营法律实务指南(私募股权卷)
评论
0/150
提交评论