2026届宿迁市重点中学数学高一上期末质量检测试题含解析_第1页
2026届宿迁市重点中学数学高一上期末质量检测试题含解析_第2页
2026届宿迁市重点中学数学高一上期末质量检测试题含解析_第3页
2026届宿迁市重点中学数学高一上期末质量检测试题含解析_第4页
2026届宿迁市重点中学数学高一上期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届宿迁市重点中学数学高一上期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的函数满足,且,,则不等式的解集为()A. B.C. D.2.从2020年起,北京考生的高考成绩由语文、数学、外语3门统一高考成绩和考生选考的3门普通高中学业水平考试等级性考试科目成绩构成,等级性考试成绩位次由高到低分为A、B、C、D、E,各等级人数所占比例依次为:A等级15%,B等级40%,C等级30%,D等级14%,E等级1%.现采用分层抽样的方法,从参加历史等级性考试的学生中抽取200人作为样本,则该样本中获得B等级的学生人数为()A.30 B.60C.80 D.283.下列函数中,是奇函数且在其定义域内单调递增的是A. B.C. D.4.定义在上的奇函数,当时,,则不等式的解集为()A. B.C. D.5.焦点在y轴上,焦距等于4,离心率等于的椭圆的标准方程是A. B.C. D.6.如图,正方形中,为的中点,若,则的值为()A. B.C. D.7.定义在上的奇函数满足,若,,则()A. B.0C.1 D.28.满足的角的集合为()A. B.C. D.9.已知函数是定义在R上的偶函数,且,当时,,则在区间上零点的个数为()A.2 B.3C.4 D.510.函数f(x)=-|sin2x|在上零点的个数为()A.2 B.4C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是_____12.已知,且,则______13.高三年级的一次模拟考试中,经统计某校重点班30名学生的数学成绩均在[100,150](单位:分)内,根据统计的数据制作出频率分布直方图如右图所示,则图中的实数a=__________,若以各组数据的中间数值代表这组数据的平均水平,估算该班的数学成绩平均值为__________14.已知函数的零点为,不等式的最小整数解为,则__________15.若函数f(x)=的定义域为R,则实数a的取值范围是:_____________.16.函数的定义域是____________.(用区间表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.将函数的图象向左平移个单位后得到函数的图象,设函数(1)求函数的最小正周期;(2)若对任意恒成立,求实数m的取值范围18.已知函数,(1)设,若是偶函数,求实数的值;(2)设,求函数在区间上的值域;(3)若不等式恒成立,求实数的取值范围19.某公司结合公司的实际情况针对调休安排展开问卷调查,提出了,,三种放假方案,调查结果如下:支持方案支持方案支持方案35岁以下20408035岁以上(含35岁)101040(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持方案”的人中抽取了6人,求的值;(2)在“支持方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.20.2022年新冠肺炎仍在世界好多国家肆虐,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨.我市某小区为了防止疫情在小区出现,严防外来人员进入小区,切实保障居民正常生活,设置“特殊值班岗”.现有包含甲、乙在内的4名志愿者参与该工作,每人安排一天,每4天一轮.在一轮的“特殊值班岗”安排中,求:(1)甲、乙两人相邻值班的概率;(2)甲或乙被安排在前2天值班的概率21.如图,在平面直角坐标系中,已知以为圆心的圆及其上一点.①设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程②设点满足存在圆上的两点和,使得四边形为平行四边形,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】对变形得到,构造新函数,得到在上单调递减,再对变形为,结合,得到,根据的单调性,得到解集.【详解】,不妨设,故,即,令,则,故在上单调递减,,不等式两边同除以得:,因为,所以,即,根据在上单调递减,故,综上:故选:B2、C【解析】根据分层抽样的概念即得【详解】由题可知该样本中获得B等级的学生人数为故选:C3、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】解:根据题意,依次分析选项:对于A,y=sinx,是正弦函数,在定义域上不是增函数;不符合题意;对于B,y=tanx,为正切函数,在定义域上不是增函数,不符合题意;对于C,y=x3,是奇函数且在其定义域内单调递增,符合题意;对于D,y=ex为指数函数,不是奇函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性4、D【解析】当时,为单调增函数,且,则的解集为,再结合为奇函数,可得答案【详解】当时,,所以在上单调递增,因为,所以当时,等价于,即,因为是定义在上的奇函数,所以时,在上单调递增,且,所以等价于,即,所以不等式的解集为故选:D5、C【解析】设椭圆方程为:,由题意可得:,解得:,则椭圆的标准方程为:.本题选择D选项6、D【解析】因为E是DC的中点,所以,∴,∴,考点:平面向量的几何运算7、C【解析】首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.8、D【解析】利用正弦函数的图像性质即可求解.【详解】.故选:D.9、C【解析】根据函数的周期性、偶函数的性质,结合零点的定义进行求解即可.【详解】因为,所以函数的周期为,当时,,即,因为函数是偶函数且周期为,所以有,所以在区间上零点的个数为,故选:C10、C【解析】在同一坐标系内画出两个函数y1=与y2=|sin2x|的图象,根据图象判断两个函数交点的个数,进而得到函数零点的个数【详解】在同一直角坐标系中分别画出函数y1=与y2=|sin2x|的图象,结合图象可知两个函数的图象在上有5个交点,故原函数有5个零点故选C【点睛】判断函数零点的个数时,可转化为判断函数和函数的图象的公共点的个数问题,解题时可画出两个函数的图象,通过观察图象可得结论,体现了数形结合在解题中的应用二、填空题:本大题共6小题,每小题5分,共30分。11、①③【解析】A即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判断即可【详解】对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;故答案为:①③【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题12、##【解析】由,应用诱导公式,结合已知角的范围及正弦值求,即可得解.【详解】由题设,,又,即,且,所以,故.故答案为:13、①.0.005(或)②.126.5(或126.5分)【解析】根据频率分布直方图的性质得到参数值,进而求得平均值.详解】由频率分布直方图可得:,∴;该班的数学成绩平均值为.故答案为:14、8【解析】利用单调性和零点存在定理可知,由此确定的范围,进而得到.【详解】函数为上的增函数,,,函数的零点满足,,的最小整数解故答案为:.15、【解析】根据题意,有在R上恒成立,则,即可得解.【详解】若函数f(x)=的定义域为R,则在R上恒成立,则,解得:,故答案为:.16、【解析】函数定义域为故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期是;(2)【解析】(1)根据图象平移计算方法求出的表达式,然后计算,再用周期公式求解即可;(2)换元令,结合自变量范围求得函数的值域,再根据不等式即可求出参数范围【详解】解:(1)依题意得则所以函数的最小正周期是;(2)令,因为,所以,则,,即由题意知,解得,即实数m的取值范围是【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为或的形式,则最小正周期为,最大值为,最小值为或结合定义域求取最值18、(1)(2)(3)【解析】(1)根据偶函数定义得,再根据对数运算性质解得实数的值;(2)根据对数运算法则得,再求分式函数值域,即得在区间上的值域(3)设,将不等式化为,再分离变量得且,最后根据基本不等式可得最值,即得实数的取值范围.试题解析:(1)因为是偶函数,所以,则恒成立,所以.(2),因为,所以,所以,则,则,所以,即函数的值域为.(3)由,得,设,则,设若则,由不等式对恒成立,①当,即时,此时恒成立;②当,即时,由解得;所以;若则,则由不等式对恒成立,因为,所以,只需,解得;故实数的取值范围是.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.19、(1)(2)【解析】(1)根据分层抽样按比例抽取,列出方程,能求出n的值;(2)35岁以下有4人,35岁以上(含35岁)有1人.设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为a,利用列举法能求出恰好有1人在35岁以上(含35岁)的概率.【详解】(1)根据分层抽样按比例抽取,得:,解得.(2)35岁以下:(人),35岁以上(含35岁):(人)设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为,,共10个样本点.设:恰好有1人在35岁以上(含35岁),有4个样本点,故.【点睛】本题考查概率的求法,分层抽样、古典概型、列举法等基础知识,考查运算求解能力,属于中档题.20、(1)(2)【解析】(1)利用列举法求解即可;(2)利用列举法求解即可.【小问1详解】由题意,设4名志愿者为甲,乙,丙,丁,4天一轮的值班安排所有可能的结果是:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,乙,甲,丁),(丙,乙,丁,甲),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),(丁,丙,乙,甲),(丁,丙,甲,乙),共24个样本点设甲乙相邻为事件A,则事件A包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(乙,甲,丙,丁),(乙,甲,丁,丙),(丙,甲,乙,丁),(丙,乙,甲,丁),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,乙,甲,丙),(丁,丙,乙,甲),(丁,丙,甲,乙),共12个样本点,故【小问2详解】设甲或乙被安排在前两天值班的为事件B则事件B包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论