版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届新疆维吾尔自治区阿克苏市农一师高级中学数学高一上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆的圆心和半径为()A.(1,1)和11 B.(-1,-1)和11C.(-1,-1)和 D.(1,1)和2.若角的终边过点,则A. B.C. D.3.在中,如果,,,则此三角形有()A.无解 B.一解C.两解 D.无穷多解4.下列关系中正确个数是()①②③④A.1 B.2C.3 D.45.农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:cm):甲:9,10,11,12,10,20;乙:8,14,13,10,12,21.根据所抽取的甲、乙两种麦苗的株高数据,给出下面四个结论,其中正确的结论是()A.甲种麦苗样本株高的平均值大于乙种麦苗样本株高的平均值B.甲种麦苗样本株高的极差小于乙种麦苗样本株高的极差C.甲种麦苗样本株高的75%分位数为10D.甲种麦苗样本株高的中位数大于乙种麦苗样本株高的中位数6.若实数,满足,则的最小值是()A.18 B.9C.6 D.27.已知是偶函数,且在上是减函数,又,则的解集为()A. B.C. D.8.半径为,圆心角为的弧长为()A. B.C. D.9.函数的零点在A. B.C. D.10.已知,则的值为()A B.1C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数,,且,若,则的值域为__________12.函数的定义域是____________.(用区间表示)13.设,向量,,若,则_______14.若,记,,,则P、Q、R的大小关系为______15.已知函数,若关于x的方程有两个不同的实根,则实数m的取值范围是______16.函数的单调递增区间是_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,在同一周期内,当时,取得最大值3;当时,取得最小值.(1)求函数的解析式;(2)求函数的单调减区间;(3)当时,函数有两个零点,求实数m的取值范围.18.2021年秋季学期,某省在高一推进新教材,为此该省某市教育部门组织该市全体高中教师在暑假期间进行相关学科培训,培训后举行测试(满分100分),从该市参加测试的数学老师中抽取了100名老师并统计他们的测试分数,将成绩分成五组,第一组[65,70),第二组[70,75),第三组[75,80),第四组[80,85),第五组[85,90],得到如图所示的频率分布直方图(1)求a的值以及这100人中测试成绩在[80,85)的人数;(2)估计全市老师测试成绩的平均数(同组中的每个数据都用该组区间中点值代替)和第50%分数位(保留两位小数);(3)若要从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,并在这6人中再抽取2人担当分享交流活动的主持人,求第四组至少有1名老师被抽到的概率19.已知,(1)若,求(2)若,求实数的取值范围.20.如图,在四棱锥中,,是以为斜边的等腰直角三角形,且.(1)证明:平面平面.(2)若四棱锥的体积为4,求四面体的表面积.21.设,且.(1)求a的值及的定义域;(2)求在区间上的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据圆的标准方程写出圆心和半径即可.【详解】因,所以圆心坐标为,半径为,故选:D2、D【解析】角的终边过点,所以.由角,得.故选D.3、A【解析】利用余弦定理,结合一元二次方程根的判别式进行求解即可.【详解】由余弦定理可知:,该一元二次方程根的判别式,所以该一元二次方程没有实数根,故选:A4、A【解析】根据集合的概念、数集的表示判断【详解】是有理数,是实数,不是正整数,是无理数,当然不是整数.只有①正确故选:A【点睛】本题考查元素与集合的关系,掌握常用数集的表示是解题关键5、B【解析】对A,由平均数求法直接判断即可;由极差概念可判断B,结合百分位数概念可求C;将甲乙两组数据排序,可判断D.【详解】甲组数据的平均数为9+10+11+12+10+206=12,乙组数据的平均数为8+14+13+10+12+216甲种麦苗样本株高的极差为11,乙种麦苗样本株高的极差为13,故B正确;6×0.75=4.5,故甲种麦苗样本株高的75%分位数为第5位数,为12,故C错误;甲种麦苗样本株高的中位数为10.5,乙种麦苗样本株高的中位数为12.5,故D错误.故选:B6、C【解析】,利用基本不等式注意等号成立条件,求最小值即可【详解】∵,,∴当且仅当,即,时取等号∴的最小值为6故选:C【点睛】本题考查了利用基本不等式求和的最小值,注意应用基本不等式的前提条件:“一正二定三相等”7、B【解析】根据题意推得函数在上是增函数,结合,确定函数值的正负情况,进而求得答案.【详解】是偶函数,且在上是减函数,又,则,且在上是增函数,故时,,时,,故的解集是,故选:B.8、D【解析】利用弧长公式即可得出【详解】解:,弧长cm故选:D9、B【解析】利用零点的判定定理检验所给的区间上两个端点的函数值,当两个函数值符号相反时,这个区间就是函数零点所在的区间.【详解】函数定义域为,,,,,因为,根据零点定理可得,在有零点,故选B.【点睛】本题考查函数零点的判定定理,本题解题的关键是看出函数在所给的区间上对应的函数值的符号,此题是一道基础题.10、A【解析】知切求弦,利用商的关系,即可得解.【详解】,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为,所以.因为且,.所以,所以,所以,.则的值域为.故答案为.12、【解析】函数定义域为故答案为.13、【解析】根据向量共线的坐标表示,得到,再由二倍角的正弦公式化简整理,即可得出结果.【详解】∵,向量,,∴,∴,∵,∴故答案为:.【点睛】本题主要考查由向量共线求参数,涉及二倍角的正弦公式,熟记向量共线的坐标表示即可,属于常考题型.14、【解析】利用平方差公式和同角三角函数的平方关系可得P、R的关系,然后作差,因式分解,结合已知可判断P、Q的大小关系.【详解】又因为,所以所以,即所以P、Q、R的大小关系为.故答案为:15、【解析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案【详解】解:由题意作出函数的图象,关于x的方程有两个不同的实根等价于函数与有两个不同的公共点,由图象可知当时,满足题意,故答案为【点睛】本题考查方程根的个数,数形结合是解决问题的关键,属基础题16、【解析】设,或为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)根据函数在同一周期的最值,确定最小正周期和,再由最大值求出,即可得出函数解析式;(2)根据正弦函数的单调递减区间列出不等式求解,即可得出结果;(3)根据自变量的范围,先确定的范围及单调性,根据函数有两个零点,推出函数与直线有两不同交点,进而可得出结果.【详解】(1)因为函数,在同一周期内,当时,取得最大值3;当时,取得最小值,,,则,所以;又,所以,解得,又,所以,因此;(2)由,解得,∴函数的单调递减区间为;(3)由,解得,即函数的单调递增区间为;,所以在区间上单调递增,在上单调递增;所以,,,又有两个零点,等价于方程有两不等实根,即函数与直线有两不同交点,因此,只需,解得,即实数的取值范围是【点睛】思路点睛:已知含三角函数的函数在给定区间的零点个数求参数时,一般需要分离参数,将问题转化为三角函数与参数对应的直线交点问题求解,利用三角函数的性质,确定其在给定区间的单调性与最值等,即可求解(有时需要利用数形结合的方法求解).18、(1);20;(2)分,76.67分(3)【解析】(1)根据频率之和为1,可求得a的值,根据频数的计算可求得测试成绩在[80,85)的人数;(2)根据频率分布直方图可计算中位数,即可求得第50%分数位;(3)列举出所有可能的抽法,再列出第四组至少有1名老师被抽到可能情况,根据古典概型的概率公式求得答案.【小问1详解】由题意得:,解得;这100人中测试成绩在[80,85)的人数为(人);【小问2详解】平均数为:(分),设中位数为m,且,则,解得,故第50%分数位76.67分;【小问3详解】第三组频率为,第四组频率为,第五组频率为,故从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,三组人数为3人,2人和1人,记第三组抽取人为,第四组抽取的人为,第五组抽取的人为,则抽取2人的所有情况如下:共15种,其中第四组至少有1名老师被抽到的抽法有共9种,故第四组至少有1名老师被抽到的概率为.19、(1);(2)【解析】(1)先化简集合A和集合B,再求.(2)由A得再因为得到,即得.【详解】(1)当时,有得,由知得或,故.(2)由知得,因为,所以,得.【点睛】本题主要考查集合的化简运算,考查集合中的参数问题,考查绝对值不等式和对数不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.20、(1)见解析(2)9【解析】(1)由已知可得,根据线面垂直的判定得平面,进而可得平面,由面面垂直的判定可得证.(2)根据四棱锥的体积可得.过作于,连接,可证得平面,.可求得,可求得四面体的表面积.【详解】(1)证明:∵是以为斜边的等腰直角三角形,∴,又,∴平面,则.又,∴平面.又平面,∴平面平面.(2)解:∵,且,∴.∴.过作于,连接,∵.∴平面,则.∵.∴.∴.故四面体的表面积为.【点睛】本题考查面面垂直的证明,四棱锥的体积和表面积的计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 慢阻肺患者的肺康复训练模式创新
- 车联网交通预测分析协议
- 工程材料采购合同协议
- 2026年跨境电商仓储服务委托协议
- 培训协议合同协议
- 慢病预防的跨部门协作机制构建
- 2026年机械操作安全专项练习卷
- 配送违约责任协议
- 幼儿园防火巡查、检查制度
- 车厢空间规划执行条款
- 近年中考真题《出师表》36套
- 中医外治技术之穴位注射操作指南:精准操作与安全优化的临床应用解析
- 青光眼病的课件
- 【《1000吨年产量的鼠李糖脂生产工艺设计》9600字(论文)】
- 装修消防安全培训课件
- 机场通行证考试题库及答案
- 葫芦丝教学讲座课件
- 包头公务接待管理办法
- 2006年浙江省衢州市中考数学试卷【含答案解析】
- 安全生产八问
- DB50∕T 548.2-2024 城市道路交通管理设施设置规范 第2部分:道路交通标线
评论
0/150
提交评论