2023年人教版七7年级下册数学期末试题含答案_第1页
2023年人教版七7年级下册数学期末试题含答案_第2页
2023年人教版七7年级下册数学期末试题含答案_第3页
2023年人教版七7年级下册数学期末试题含答案_第4页
2023年人教版七7年级下册数学期末试题含答案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年人教版七7年级下册数学期末试题含答案一、选择题1.如图,直线a,b,c被射线l和m所截,则下列关系正确的是()A.∠1与∠2是对顶角 B.∠1与∠3是同旁内角C.∠3与∠4是同位角 D.∠2与∠3是内错角2.在以下现象中,属于平移的是()①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.A.①② B.②④ C.②③ D.③④3.在直角坐标系中内点在第三象限,那么点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③垂直于同一条直线的两条直线平行:④同旁内角互补.其中错误的有()A.1个 B.2个 C.3个 D.4个5.如图,,平分,平分,,,则下列结论:①,②,③,④.其中正确的是()A.①②③ B.①②④ C.②③④ D.①②③④6.下列说法正确的是()A.0的立方根是0 B.0.25的算术平方根是-0.5C.-1000的立方根是10 D.的算术平方根是7.如图,将直尺与含45°角的三角尺叠放在一起,其两边与直尺相交,若∠1=25°,则∠2的度数为()A.120° B.135° C.150° D.160°8.如图,所有正方形的中心均在坐标原点,且各边与轴或轴平行,从内到外,它们的边长依次2,4,6,8,,…顶点依次用,,,,…表示,则顶点的坐标是()A. B. C. D.九、填空题9.已知是实数,且则的值是_______.十、填空题10.在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_______.十一、填空题11.如图,在平面直角坐标系中,点,,三点的坐标分别是,,,过点作,交第一象限的角平分线于点,连接交轴于点.则点的坐标为______.十二、填空题12.如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____.十三、填空题13.将长方形纸带沿EF折叠(如图1)交BF于点G,再将四边形EDCF沿BF折叠,得到四边形,EF与交于点O(如图2),最后将四边形沿直线AE折叠(如图3),使得A、E、Q、H四点在同一条直线上,且恰好落在BF上若在折叠的过程中,,且,则________.十四、填空题14.[x)表示小于x的最大整数,如[2.3)=2,[4)=5,则下列判断:①[)=;②[x)x有最大值是0;③[x)x有最小值是1;④x[x)x,其中正确的是__________(填编号).十五、填空题15.已知点M在y轴上,纵坐标为4,点P(6,﹣4),则△OMP的面积是__.十六、填空题16.在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的幸运点.已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,…,这样依次得到点A1,A2,A3,…,An.若点A1的坐标为(3,1),则点A2020的坐标为_______.十七、解答题17.计算:(1)(2)(3)(4)十八、解答题18.求下列各式中的值:(1);(2);(3).十九、解答题19.如图,,试说明.证明:∵(已知)∴________=________(垂直定义)∴________//________(________________)∵(________)∴________//________(________________)∴________(平行于同一直线的两条直线互相平行)∴(________________________).二十、解答题20.已知点A(-2,3),B(4,3),C(-1,-3).(1)在平面直角坐标系中标出点A,B,C的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标.二十一、解答题21.一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根.二十二、解答题22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.二十三、解答题23.已知,点在与之间.(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.二十四、解答题24.如图,,平分,设为,点E是射线上的一个动点.(1)若时,且,求的度数;(2)若点E运动到上方,且满足,,求的值;(3)若,求的度数(用含n和的代数式表示).二十五、解答题25.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在中,,是的角平分线,求证:是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在中,若,,,则是“准互余三角形”;②若是“准互余三角形”,,,则;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数.【参考答案】一、选择题1.C解析:C【分析】根据对顶角、邻补角、同位角、内错角的定义分别分析即可.【详解】解:A、∠1与∠2是邻补角,故原题说法错误;B、∠1与∠3不是同旁内角,故原题说法错误;C、∠3与∠4是同位角,故原题说法正确;D、∠2与∠3不是内错角,故原题说法错误;故选:C.【点睛】此题主要考查了对顶角、邻补角、内错角和同位角,解题的关键是掌握对顶角、邻补角、内错角和同位角的定义.2.B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】①在荡秋千的小朋友的运动,不是平移;②坐观光电梯上升的过程,是平移;③钟面上秒针的运动,不是平移;④生产过程中传送带上的电视机的移动过程.是平移;故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.D【分析】根据第三象限内点的坐标符号判断出a、b,再根据各象限内点的坐标特征解答.【详解】解:∵点M(a,b)在第三象限,∴a<0,b<0,∴-a>0,那么点N(-a,b)所在的象限是:第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据对顶角的性质、同旁内角的概念、平行公理及推论逐一进行判断即可.【详解】解:①对顶角相等,原命题正确;②过直线外一点有且只有一条直线与已知直线平行,原命题错误;③在同一平面内,垂直于同一条直线的两条直线平行,原命题错误;④两直线平行,同旁内角互补,原命题错误.故选:C.【点睛】本题考查了平行公理及推论,对顶角、邻补角和同旁内角等知识,熟记其概念和性质是解题的关键.5.B【分析】根据角平分线的性质可得,,,再利用平角定义可得∠BCF=90°,进而可得①正确;首先计算出∠ACB的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE的度数,可分析出③错误;根据∠3和∠4的度数可得④正确.【详解】解:如图,∵BC平分∠ACD,CF平分∠ACG,∴∵∠ACG+∠ACD=180°,∴∠ACF+∠ACB=90°,∴CB⊥CF,故①正确,∵CD∥AB,∠BAC=50°,∴∠ACG=50°,∴∠ACF=∠4=25°,∴∠ACB=90°-25°=65°,∴∠BCD=65°,∵CD∥AB,∴∠2=∠BCD=65°,∵∠1=∠2,∴∠1=65°,故②正确;∵∠BCD=65°,∴∠ACB=65°,∵∠1=∠2=65°,∴∠3=50°,∴∠ACE=15°,∴③∠ACE=2∠4错误;∵∠4=25°,∠3=50°,∴∠3=2∠4,故④正确,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.6.A【分析】根据算术平方根以及立方根的概念逐一进行凑数即可得.【详解】A.0的立方根是0,正确,符合题意;B.0.25的算术平方根是0.5,故B选项错误,不符合题意;C.-1000的立方根是-10,故C选项错误,不符合题意;D.的算术平方根是,故D选项错误,不符合题意,故选A.【点睛】本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.7.D【分析】如图,利用三角形的外角的性质求出∠3,再利用平行线的性质可得结论.【详解】解:如图,∵∠4=45°,∠1=25°,∠4=∠1+∠3,∴∠3=45°-25°=20°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°-20°=160°,故选:D.【点睛】本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题.8.C【分析】根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−解析:C【分析】根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数)”,依此即可得出结论.【详解】解:观察发现:A1(−1,−1),A2(−1,1),A3(1,1),A4(1,−1),A5(−2,−2),A6(−2,2),A7(2,2),A8(2,−2),A9(−3,−3),…,∴A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数),∵2021=505×4+1,∴A2021(−506,−506)故选C.【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数)”.九、填空题9.6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛解析:6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.十、填空题10.【分析】如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质解析:【分析】如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,∠PAQ=90°,由于点P坐标已知,故可求出点A的坐标,进而可求出点Q坐标.【详解】解:如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,设直线y=x-1交x轴于点B,交y轴于点C,则点B(1,0)、点C(0,﹣1),∴OB=OC=1,∴∠OBC=45°,∴∠PAB=45°,∵P、Q关于直线y=x-1对称,∴AP=AQ,∠PAB=∠QAB=45°,∴∠PAQ=90°,∴AQ⊥x轴,∵P(﹣2,3),且当y=3时,3=x﹣1,解得x=4,∴A(4,3),∴AD=3,PA=6=AQ,∴DQ=3,∴点Q的坐标是(4,﹣3).故答案为:(4,﹣3).【点睛】本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键.十一、填空题11.【分析】设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入,得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E解析:【分析】设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入,得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E的坐标.【详解】解:设D(x,y),点在第一象限的角平分线上,,,,设直线AB的解析式为:,把,代入得:k=2,,,把代入,得b=-1,,点D在上,,设直线AD的解析式为:,可得,,,当x=0时,,,故答案为:【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键.十二、填空题12.40°【分析】根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.【详解】∵AD∥BC,∠B=40°,∴∠EAD=∠B=40°,∵AD是∠EAC的平解析:40°【分析】根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.【详解】∵AD∥BC,∠B=40°,∴∠EAD=∠B=40°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.十三、填空题13.32°【分析】连接EQ,根据A、E、Q、H在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,∵A、E、Q、H在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ,根据A、E、Q、H在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,∵A、E、Q、H在同一直线上∴∥∴∵∥∴∵,=90°∴=180°-90°-26°=64°由折叠的性质可知:∴=32°故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.十四、填空题14.③,④【分析】①[x)示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x)示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)x联立即可判断.【详解】由定义知[x)x≤[x)+1,①[)=-9①不正确,②[x)表示小于x的最大整数,[x)x,[x)-x0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)x有最小值是1,③正确,④由定义知[x)x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)x,∴x[x)x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)x≤[x)+1,利用性质解决问题是关键.十五、填空题15.【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.【详解】解:∵M在y轴上,纵坐标为4,∴OM=4,∵P(6,﹣4),∴S△OMP=OM•|xP|=×4×6=12解析:【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.【详解】解:∵M在y轴上,纵坐标为4,∴OM=4,∵P(6,﹣4),∴S△OMP=OM•|xP|=×4×6=12.故答案为12.【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键.十六、填空题16.(0,-2)【分析】根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根解析:(0,-2)【分析】根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根据此规律即可解决问题.【详解】解:观察,发现规律:A1(3,1),A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),…,∴A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数).∵2020=4×504+4,∴点A2020的坐标为(0,-2).故答案为:(0,-2).【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”.十七、解答题17.(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式.【详解】解:(1)=3+2+1=6;(2)=2-3-3=-4;(3)=;(4)==.故答案为(1)6;(2)-4;(3);(4).【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.十八、解答题18.(1);(2);(3)【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵,∴;(2)∵,∴,∴;(3)∵,∴,∴.【点睛】此题主要考查了平方根的定义,熟练掌握平解析:(1);(2);(3)【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵,∴;(2)∵,∴,∴;(3)∵,∴,∴.【点睛】此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键.十九、解答题19.,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;;两直线平行,同位角相等.【分析】根据平行线的判定定理得到AB∥CD∥EF,再由平行线的性质证得结论,据此填空即可.【详解】解析:,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;;两直线平行,同位角相等.【分析】根据平行线的判定定理得到AB∥CD∥EF,再由平行线的性质证得结论,据此填空即可.【详解】证明:∵(已知),∴(垂直定义),∴(同位角相等,两直线平行),∵(已知),∴(内错角相等,两直线平行),∴(平行于同一直线的两条直线互相平行),∴(两直线平行,同位角相等).故答案为:CDF,90;AB,CD,同位角相等,两直线平行;已知;AB,EF,内错角相等,两直线平行;EF;两直线平行,同位角相等.【点睛】本题考查了平行线的判定与性质,熟练掌握性质及判定定理是解题的关键.二十、解答题20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长×C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)∵A(-2,3),B(4,3),∴AB=4-(-2)=6;(3)∵C(-1,-3),∴C到x轴的距离为3,到直线AB的距离为6;(4)∵AB=6,C到直线AB的距离为6,∴;(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求∴P(0,-3);同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);∴P(0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案.【详解】∵一个正数的两个平方根为和,∴,解得:,∵是的立方根,∴,解得:,∵,解析:【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案.【详解】∵一个正数的两个平方根为和,∴,解得:,∵是的立方根,∴,解得:,∵,∴的整数部分是6,则小数部分是:,∴,∴的平方根为:.【点睛】本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用.二十二、解答题22.正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,∴,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,∴,取正值,可得,∴答:正方形纸板的边长是18厘米.【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.二十三、解答题23.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.二十四、解答题24.(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情况,①若点运动到上方,根据平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论