版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此卷只装订不密封班级姓名准考证号此卷只装订不密封班级姓名准考证号考场号座位号此卷只装订不密封班级姓名准考证号考场号座位号数学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4.考试结束后,请将本试题卷和答题卡一并上交。第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.空集 B. C. D.【答案】C【解析】因为,所以,即,又,所以,因此.2.已知复数满足,则()A. B. C. D.【答案】A【解析】∵,∴.3.已知向量,,且,则与的夹角为()A. B. C. D.【答案】A【解析】设与的夹角为,∵,∴,∴,∵,∴.4.若的展开式中常数项为,则实数()A. B. C. D.【答案】C【解析】展开式的通项公式,故当时,为常数项,此时,故.5.正三角形的边长为,将它沿高折叠,使点与点间的距离为,则四面体外接球的表面积为()A. B. C. D.【答案】B【解析】根据题意可知四面体的三条侧棱、,底面是等腰,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的上下底面三角形的中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面,,,∴,∴的外接圆的半径为,由题意可得:球心到底面的距离为,∴球的半径为,外接球的表面积为.6.设命题,,则为()A., B.,C., D.,【答案】B【解析】全称命题的否定是特称命题.7.已知为函数的图像上任意一点,过作直线,分别与圆相切于,两点,则原点到直线得距离的最大值为()A. B. C. D.【答案】B【解析】设,则,∴以为直径的圆的方程为,即,又∵为圆与圆的公共弦,∴两圆作差可得直线的方程为,∴点到直线的距离,当且仅当,即或时取等号,∴原点到直线的距离的最大值为.8.已知定义在上的函数满足,为偶函数,若在内单调递减,则下面结论正确的是()A. B.C. D.【答案】A【解析】∵,∴的周期为,又∵为偶函数,∴,,∵,,∴,又在内单调递减,∴,∴.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.即空气质量指数,越小,表明空气质量越好,当不大于时称空气质量为“优良”,如图是某市月日到日的统计数据,则下列叙述不正确的是()A.这天的的中位数是 B.天中超过天空气质量为“优良”C.从月日到日,空气质量越来越好 D.这天的的平均值为【答案】ABD【解析】这天的指数值的中位数是,故A不正确;这天中,空气质量为“优良”的有,,,,,共天,故B不正确;从日到日,空气质量越来越好,故C正确;这天的指数值的平均值约为,故D不正确.10.如图,在正方体中,点在线段上运动,则下列判断中正确的是()A.平面平面B.平面C.异面直线与所成角的取值范围是D.三棱锥的体积不变【答案】ABD【解析】A中,连接,根据正方体的性质,有面,平面,从而可以证明平面平面,正确;B中,连接,容易证明平面面,从而由线面平行的定义可得平面,正确;C中,当与线段的两端点重合时,与所成角取最小值,当与线段的中点重合时,与所成角取最大值,故与所成角的范围是,错误;D中,,到面的距离不变,且三角形的面积不变,∴三棱锥的体积不变,正确.11.设,是抛物线上的两个不同的点,是坐标原点,若直线与的斜率之积为,则下列说法错误的是()A. B.以为直径的圆的面积大于C.直线过抛物线的焦点 D.到直线的距离不大于【答案】ABC【解析】当直线的斜率不存在时,设,,由斜率之积为,可得,即,∴的直线方程为;当直线的斜率存在时,设直线方程为,联立,可得,此时设,,则,,∴,即,∴直线方程为,则直线过定点,则到直线的距离不大于.12.已知函数的图象如图所示,令,则下列关于函数的说法中正确的是()A.函数图象的对称轴方程为B.函数的最大值为C.函数的图象上存在点,使得在点处的切线与直线平行D.方程的两个不同的解分别为,,则最小值为【答案】ABD【解析】根据函数的图象知,,,∴,,根据五点法画图知,当时,,∴,∴,∴,∴,令,,解得,,∴函数的对称轴方程为,,A正确;当,时,函数取得最大值,B正确;,假设函数的图象上存在点,使得在点处的切线与直线平行,则,解得,显然不成立,所以假设错误,即C错误;方程,则,∴,∴或,;∴方程的两个不同的解分别为,时,的最小值为,D正确.第Ⅱ卷三、填空题:本大题共4小题,每小题5分,共20分.13.甲、乙、丙、丁四名同学申报所不同的高校的自主招生,要求每名同学只能申报一所学校,每所学校必须有同学申报,甲、乙或甲、丙均不能申报同一所学校,则不同的申报方案有种.【答案】【解析】根据题意,必定有两个人报一所学校,有种可能:甲丁、丙丁、乙丁、乙丙,将这些分别看作一个整体,再排列组合,所以总共有.14.已知角满足,则.【答案】【解析】由题意得.15.已知椭圆的右焦点为,其关于直线的对称点在椭圆上,则离心率,.【答案】,【解析】设,由题意可得,由①②可得,,代入③可得,即,可得,解得,所以,,,所以,所以是等腰直角三角形,所以.16.已知球的体积为,则球的内接圆锥的体积的最大值为_________.【答案】【解析】设球的半径为,则有,整理得,即,设该球的内接圆锥的底面圆的半径为,高为,则有,而该圆锥的体积,利用均值不等式可得当时,即时取得最大值,且最大值为.四、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在数列中,,,设,.(1)求证数列是等差数列,并求通项公式;(2)设,且数列的前项和为,若,求使恒成立的的取值范围.【答案】(1)证明见解析,;(2).【解析】(1)由条件知,,所以,,所以,又,所以,数列是首项为,公差为的等差数列,故数列的通项公式为.(2)由(1)知,,则,①,②由①②,得,∴,∵,∴恒成立,等价于对任意恒成立.∵,∴.18.(12分)如图,在中,,,,,分别为,的中点.(1)若,求;(2)若,求的大小.【答案】(1);(2).【解析】(1)由可知,,,所以,因为,所以,所以,所以.(2)因为,所以,所以.19.(12分)如图,四棱锥中,底面,底面为直角梯形,,,,分别为,的中点.(1)求证:平面;(2)若截面与底面所成锐二面角为,求的长度.【答案】(1)证明见解析;(2).【解析】(1)证明:取的中点,连接,,∵是的中点,∴且,∵底面为直角梯形,,,∴,,∴且,∴四边形是平行四边形,∴,又∵平面,平面,∴平面.(2)如图,分别以,,为,,轴建立空间直角坐标系,设,则,,,,,,取平面的法向量,,,设平面的法向量为,则有,即,不妨设,则,,即,∴,解得,即.20.(12分)某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为,,…,)的学生给父母洗脚的百分比进行了调查统计,绘制得到下面的散点图.(1)由散点图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)建立关于的回归方程,并据此预计该校学生升入中学的第一年(年纪代码为)给父母洗脚的百分比.附注:参考数据:,,.参考公式:相关系数,若,则与的线性相关程度相当高,可用线性回归模型拟合与的关系.回归方程中斜率与截距的最小二乘估计公式分别为:,.【答案】(1)见解析;(2).【解析】(1)因为,所以,所以,因为,所以,所以,由于与的相关系数约为,说明与的线性相关程度相当高,从而可用线性回归模型拟合与的关系.(2),因为,所以,所以回归方程为.将,代入回归方程可得,所以预计该校学生升入中学的第一年给父母洗脚的百分比为.21.(12分)已知点是离心率为的椭圆()上的一点,斜率为的直线交椭圆于、两点,且、、三点不重合.(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值;(3)面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?【答案】(1);(2)证明见解析;(3)存在,最大值为.【解析】(1)∵点是离心率为的椭圆()上的一点,∴,解得,,,∴椭圆的方程为.(2)设,,直线、的斜率分别为、,设直线的方程为,联立,得,∴,解得,①,②,则,(*)将①、②式代入*式整理得,∴直线,的斜率之和为定值.(3),设为点到直线的距离,∴,∴,当且仅当时取等号,∵,∴当时,的面积最大,最大值为.22.(12分)已知函数有两个极值点.(1)求的取值范围;(2)设,()是的两个极值点,证明:.【答案】(1);(2)证明见解析.【解析】(1)由,,得,函数有两个极值点等价于在上有两个变号零点,等价于在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年一级建造师工程管理历年真题详解
- 企业员工心理健康辅导机制设计方案
- 温泉安全常识培训心得
- 财务主管月度工作报告模板
- 温泉医疗安全培训课件
- 建筑监理工程师安全责任书范本
- 小学数学教研活动年度工作计划
- 温州正规电工安全培训课件
- 高校电子资源采购与管理标准
- 工业废水处理工艺流程手册
- 1807《经济学(本)》国家开放大学期末考试题库
- 2025年北京航空航天大学马克思主义基本原理概论期末考试模拟题带答案解析(必刷)
- 2026年演出经纪人考试题库附参考答案(完整版)
- 高一物理(人教版)试题 必修二 阶段质量检测(一) 抛体运动
- 美团代运营服务合同协议模板2025
- 2025-2026学年人教版七年级生物上册知识点梳理总结
- 2025年新修订版《森林草原防灭火条例》全文+修订宣贯解读课件(原创)
- 2025年秋鲁教版(新教材)小学信息科技三年级上册期末综合测试卷及答案(三套)
- 工业设计工作流程及标准教程
- 2025年放射技师考试真题及答案
- 《好睡新的睡眠科学与医学》阅读笔记
评论
0/150
提交评论