2026届福建厦门松柏中学高一数学第一学期期末检测试题含解析_第1页
2026届福建厦门松柏中学高一数学第一学期期末检测试题含解析_第2页
2026届福建厦门松柏中学高一数学第一学期期末检测试题含解析_第3页
2026届福建厦门松柏中学高一数学第一学期期末检测试题含解析_第4页
2026届福建厦门松柏中学高一数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届福建厦门松柏中学高一数学第一学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.给定四个函数:①;②();③;④.其中是奇函数的有()A.1个 B.2个C.3个 D.4个2.若函数的定义域是,则函数值域为()A. B.C. D.3.计算sin(-1380°)的值为()A. B.C. D.4.函数的部分图像如图所示,则的最小正周期为()A. B.C. D.5.已知角的终边在第三象限,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知集合,集合为整数集,则A. B.C. D.7.如图,AB是⊙O直径,C是圆周上不同于A、B的任意一点,PA与平面ABC垂直,则四面体P_ABC的四个面中,直角三角形的个数有()A.4个 B.3个C.1个 D.2个8.某校早上6:30开始跑操,假设该校学生小张与小王在早上6:00~6:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张与小王至少相差5分钟到校的概率为()A. B.C. D.9.函数的定义域为()A.(-∞,4) B.[4,+∞)C.(-∞,4] D.(-∞,1)∪(1,4]10.“”是“幂函数在上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个同时具有下列三个性质的函数:___________.①为幂函数;②为偶函数;③在上单调递减.12.已知等差数列的前项和为,,则__________13.若,则________.14.已知函数是定义在上的奇函数,当时,,则__________.15.函数的反函数为___________.16.已知,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数满足:,且该函数的最小值为1.(1)求此二次函数的解析式;(2)若函数的定义域为(其中),问是否存在这样的两个实数m,n,使得函数的值域也为A?若存在,求出m,n的值;若不存在,请说明理由.18.设两个向量,,满足,.(1)若,求、的夹角;(2)若、夹角为,向量与夹角为钝角,求实数的取值范围.19.化简或计算下列各式.(1);(2)20.设函数,且,函数(1)求的解析式;(2)若方程-b=0在[-2,2]上有两个不同的解,求实数b的取值范围21.已知四棱锥的底面是菱形,,又平面,点是棱的中点,在棱上.(1)证明:平面平面.(2)试探究在棱何处时使得平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】首先求出函数的定义域,再由函数的奇偶性定义即可求解.【详解】①函数的定义域为,且,,则函数是奇函数;②函数的定义域关于原点不对称,则函数()为非奇非偶函数;③函数的定义域为,,则函数不是奇函数;④函数的定义域为,,则函数是奇函数.故选:B2、A【解析】根据的单调性求得正确答案.【详解】根据复合函数单调性同增异减可知在上递增,,即.故选:A3、D【解析】根据诱导公式以及特殊角三角函数值求结果.【详解】sin(-1380°)=sin(-1380°+1440°)=sin(60°)=故选:D【点睛】本题考查诱导公式以及特殊角三角函数值,考查基本求解能力,属基础题.4、B【解析】由图可知,,计算即可.【详解】由图可知,,则,故选:B5、D【解析】根据角的终边所在象限,确定其正切值和余弦值的符号,即可得出结果.【详解】角的终边在第三象限,则,,点P在第四象限故选:D.6、A【解析】,选A.【考点定位】集合的基本运算.7、A【解析】AB是圆O的直径,可得出三角形是直角三角形,由圆O所在的平面,根据线垂直于面性质得出三角形和三角形是直角三角形,同理可得三角形是直角三角形.【详解】∵AB是圆O的直径,∴∠ACB=,即,三角形是直角三角形.又∵圆O所在的平面,∴三角形和三角形是直角三角形,且BC在此平面中,∴平面,∴三角形是直角三角形.综上,三角形,三角形,三角形,三角形.直角三角形数量为4.故选:A.【点睛】考查线面垂直的判定定理和应用,知识点较为基础.需多理解.难度一般.8、A【解析】设小张与小王的到校时间分别为6:00后第分钟,第分钟,由题意可画出图形,利用几何概型中面积比即可求解.【详解】设小张与小王的到校时间分别为6:00后第分钟,第分钟,可以看成平面中的点试验的全部结果所构成的区域为是一个正方形区域,对应的面积,则小张与小王至少相差5分钟到校事件(如阴影部分)则符合题意的区域,由几何概型可知小张与小王至少相差5分钟到校的概率为.故选:A【点睛】本题考查了几何概率模型,解题的关键是画出满足条件的区域,属于基础题.9、D【解析】根据函数式的性质可得,即可得定义域;【详解】根据的解析式,有:解之得:且;故选:D【点睛】本题考查了具体函数定义域的求法,属于简单题;10、A【解析】由幂函数的概念,即可求出或,再根据或均满足在上单调递增以及充分条件、必要条件的概念,即可得到结果.【详解】若为幂函数,则,解得或,又或都满足在上单调递增故“”是“幂函数在上单调递增”的充分不必要条件故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、(或,,答案不唯一)【解析】结合幂函数的图象与性质可得【详解】由幂函数,当函数图象在一二象限时就满足题意,因此,或,等等故答案为:(或,,答案不唯一)12、161【解析】由等差数列的性质可得,即可求出,又,带入数据,即可求解【详解】由等差数列的性质可得=,所以,又由等差数列前n项和公式得【点睛】本题考查等差数列的性质及前n项和公式,属基础题13、【解析】利用三角函数的诱导公式,化简得到原式,代入即可求解.【详解】因为,由故答案为:14、12【解析】由函数的奇偶性可知,代入函数解析式即可求出结果.【详解】函数是定义在上的奇函数,,则,.【点睛】本题主要考查函数的奇偶性,属于基础题型.15、【解析】由题设可得,即可得反函数.【详解】由,可得,∴反函数为.故答案为:.16、【解析】利用交集的运算解题即可.【详解】交集即为共同的部分,即.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,,.【解析】(1)设,由,求出值,可得二次函数的解析式;(2)分①当时,②当时,③当时,三种情况讨论,可得存在满足条件的,,其中,【详解】解:(1)依题意,可设,因,代入得,所以.(2)假设存在这样m,n,分类讨论如下:当时,依题意,即两式相减,整理得,代入进一步得,产生矛盾,故舍去;当时,依题意,若,,解得或(舍去);若,,产生矛盾,故舍去;当时,依题意,即解得,产生矛盾,故舍去综上:存在满足条件的m,n,其中,18、(1);(2)且.【解析】(1)根据数量积运算以及结果,结合模长,即可求得,再根据数量积求得夹角;(2)根据夹角为钝角则数量积为负数,求得的范围;再排除向量与不为反向向量对应参数的范围,则问题得解.【详解】(1)因,所以,即,又,,所以,所以,又,所以向量、的夹角是.(2)因为向量与的夹角为钝角,所以,且向量与不反向共线,即,又、夹角为,所以,所以,解得,又向量与不反向共线,所以,解得,所以的取值范围是且.【点睛】本题考查利用数量积求向量夹角,以及由夹角范围求参数范围,属综合基础题.19、(1)(2)【解析】(1)根据诱导公式化简整理即可得答案;(2)根据二倍角公式和同角三角函数关系化简即可得答案.【小问1详解】解:【小问2详解】解:20、(1),(2)【解析】(1);本题求函数解析式只需利用指数的运算性质求出a的值即可,(2)对于同时含有的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题试题解析:解:(1)∵,且∴∵∴(2)法一:方程为令,则-且方程为在有两个不同的解设,两函数图象在内有两个交点由图知时,方程有两不同解.法二:方程为,令,则∴方程在上有两个不同的解.设解得考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论