版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)苏教七年级下册期末解答题压轴数学综合测试真题解析一、解答题1.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.2.在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.①若,,则_____;若,则_____;②试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.3.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且(1)直接写出的面积;(2)如图②,若,作的平分线交于,交于,试说明;(3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.4.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.(1)=;(2)如图2,点C、D是、角平分线上的两点,且,求的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若,,且,求n的值.5.已知在中,,点在上,边在上,在中,边在直线上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点在上时,求度数;(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数.6.在△ABC中,∠ABC=∠ACB,点D在直线BC上(不与B、C重合),点E在直线AC上(不与A、C重合),且∠ADE=∠AED.(1)如图1,若∠ABC=50°,∠AED=80°,则∠CDE=°,此时,=.(2)若点D在BC边上(点B、C除外)运动(如图1),试探究∠BAD与∠CDE的数量关系,并说明理由;(3)若点D在线段BC的延长线上,点E在线段AC的延长线上(如图2),其余条件不变,请直接写出∠BAD与∠CDE的数量关系:.(4)若点D在线段CB的延长线上(如图3),点E在直线AC上,∠BAD=26°,其余条件不变,则∠CDE=(友情提醒:可利用图3画图分析).7.(问题情境)苏科版义务教育教科书数学七下第42页有这样的一个问题:(1)探究1:如图1,在中,P是与的平分线和的交点,通过分析发现,理由如下:∵和分别是和的角平分线,∴,.∴.又∵在中,,∴∴(2)探究2:如图2中,H是外角与外角的平分线和的交点,若,则______.若,则与有怎样的关系?请说明理由.(3)探究3:如图3中,在中,P是与的平分线和的交点,过点P作,交于点D.外角的平分线与的延长线交于点E,则根据探究1的结论,下列角中与相等的角是______;A.B.C.(4)探究4:如图4中,H是外角与外角的平分线和的交点,在探究3条件的基础上,①试判断与的位置关系,并说明理由;②在中,存在一个内角等于的3倍,则的度数为______8.(概念认识)如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.(问题解决)(1)如图②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分线BD交AC于点D,求∠BDC的度数;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻BC三分线和∠ACB邻BC三分线,且∠BPC=140°,求∠A的度数;(延伸推广)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°(),∠B=54°,直接写出∠BPC的度数.(用含m的代数式表示)9.直线与直线垂直相交于O,点A在射线上运动,点B在射线上运动.(1)如图1,已知、分别是和角的平分线,点A、B在运动的过程中,的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(2)如图2,延长至D,己知、的角平分线与的角平分线及其延长线相交于E、F.①求的度数.②在中,如果有一个角是另一个角的3倍,试求的度数.10.已知:直线l分别交AB、CD与E、F两点,且AB∥CD.(1)说明:∠1=∠2;(2)如图2,点M、N在AB、CD之间,且在直线l左侧,若∠EMN+∠FNM=260°,①求:∠AEM+∠CFN的度数;②如图3,若EP平分∠AEM,FP平分∠CFN,求∠P的度数;(3)如图4,∠2=80°,点G在射线EB上,点H在AB上方的直线l上,点Q是平面内一点,连接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接写出∠GQH的度数.【参考答案】一、解答题1.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.【详解】(1)由翻折的性质可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故与∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故与∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°则,,由翻折可知:∵,,∴,,当∠FDE=∠DFE时,,解得:;当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.2.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性质可得∠AFD=∠FDM+∠FMD=90°-∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.3.(1)3;(2)见解析;(3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)见解析;(3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.详解:(1)S△BCD=CD•OC=×3×2=3.(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.4.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.【详解】解:(1)如图:过O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分别延长AC、CD交GH于点E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)设FB交MN于K,∵,则;∴∵,∴,,在△FAK中,,∴,∴.经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.5.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得出结论.【详解】解:(1),,,,,;(2)由(1)知,,,,,;(3)当时,如图3,由(1)知,,;当时,如图4,,点,重合,,,由(1)知,,,即当以、、为顶点的三角形是直角三角形时,度数为或.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键.6.(1)30,2;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形内角和定理以及三角形的外角的性质解决问题即可;(2)结论:∠B解析:(1)30,2;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形内角和定理以及三角形的外角的性质解决问题即可;(2)结论:∠BAD=2∠CDE.设∠B=∠C=x,∠AED=∠ADE=y,则∠BAC=180°-2x,∠CDE=yx,∠DAE=180°-2y,推出∠BAD=∠BAC-∠DAE=2y-2x=2(y-x),由此可得结论.(3)如图②中,结论:∠BAD=2∠CDE.解决方法类似(2).(4)分两种情形:①当点E在CA的延长线上,设∠ABC=∠C=x,∠AED=∠ADE=y,则∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,由题意,∠BAD=180°-∠BAC-∠DAE=2x+2y-180°=22°,推出x+y=101°,可得结论.②如图④中,当点E在AC的延长线上时,同法可求.【详解】解:(1)如图①中,∵∠ABC=∠ACB=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠AED=∠CDE+∠C,∴∠CDE=80°﹣50°=30°,∵∠ADE=∠AED=80°,∴∠DAE=180°﹣80°﹣80°=20°,∴∠BAD=∠BAC﹣∠DAE=80°﹣20°=60°,∴=2.故答案为30,2;(2)结论:∠BAD=2∠CDE.理由:设∠B=∠C=x,∠AED=∠ADE=y,则∠BAC=180°﹣2x,∠CDE=y﹣x,∠DAE=180°﹣2y,∴∠BAD=∠BAC﹣∠DAE=2y﹣2x=2(y﹣x),∴∠BAD=2∠CDE;(3)如图②中,结论:∠BAD=2∠CDE.理由:设∠B=∠ACB=x,∠AED=∠ADE=y,则∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=∠BAC+∠DAE=360°﹣2(x+y),∴∠BAD=2∠CDE.故答案为:∠BAD=2∠CDE;(4)如图③中,设∠ABC=∠C=x,∠AED=∠ADE=y,则∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=180°﹣∠BAC﹣∠DAE=2x+2y﹣180°=26°,∴x+y=103°∴∠CDE=180°﹣103°=77°.如图④中,当点E在AC的延长线上时,设∠ABC=∠ACB=x,∠AED=∠ADE=y,则∠ADB=x﹣26°,∠CDE=y﹣(x﹣26°),∵∠ACB=∠CDE+∠AED,∴x=y+y﹣(x﹣26°),∴x﹣y=13°,∴∠CDE=x﹣y=13°故答案为:77°或13°.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,三角形内角和定理,三角形的外角的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.7.(2);;理由见解析;(3)B;(4)①,理由见解析;②45°或60°【分析】(2)由(1)中结论可得,依据角平分线的定义,即可得出和均为直角;再根据四边形内角和进行计算,即可得到的度数以及与的解析:(2);;理由见解析;(3)B;(4)①,理由见解析;②45°或60°【分析】(2)由(1)中结论可得,依据角平分线的定义,即可得出和均为直角;再根据四边形内角和进行计算,即可得到的度数以及与的关系;(3)由(1)中结论可得,再根据垂线的定义以及三角形外角性质,即可得出,进而得到;(4)①根据,即可得到,再根据角平分线的定义,即可得到,依据,即可判定;②由①可得,即可得出,再根据在中一个内角等于的倍,分三种情况讨论,即可得出的度数.【详解】解:(2)由(1)可得,,∵是外角与外角的平分线和的交点,是与的平分线和的交点,∴,同理可得,∴四边形中,,故答案为:;若,则与关系为:.理由:由(1)可得,,∵是外角与外角的平分线和的交点,是与的平分线和的交点,∴,同理可得,∴四边形中,.(3)由(1)可得,,∵,平分,∴,,∵是的外角,∴,∴,故答案为:;(4)①.理由:∵,∴,∵,分别平分,,∴,,∴,∴,∴;②由①可得,∴,∵平分,平分,∴,∴,分三种情况:①若,则,解得(不合题意),②若,则,∴,解得,∴,由(2)可得,,即,∴;③若,则,∴,解得,∴,由(2)可得,,即,∴;综上所述,的度数为或.故答案为:或.【点睛】本题属于三角形综合题,主要考查的是角平分线的定义,三角形外角性质,三角形内角和定理以及平行线的判定的综合运用,熟记基本图形中的结论,准确识图并灵活运用基本结论是解题的关键.8.(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根据题意可得的三分线有两种情况,画图根据三角形的外角性质即可得的度数;(2)根据、分别是邻三分线和邻解析:(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根据题意可得的三分线有两种情况,画图根据三角形的外角性质即可得的度数;(2)根据、分别是邻三分线和邻三分线,且可得,进而可求的度数;(3)根据的三分线所在的直线与的三分线所在的直线交于点.分四种情况画图:情况一:如图①,当和分别是“邻三分线”、“邻三分线”时;情况二:如图②,当和分别是“邻三分线”、“邻三分线”时;情况三:如图③,当和分别是“邻三分线”、“邻三分线”时;情况四:如图④,当和分别是“邻三分线”、“邻三分线”时,再根据,,根据三角形外角性质,即可求出的度数.【详解】解:(1)如图,当BD是“邻AB三分线”时,;当BD是“邻BC三分线”时,;(2)在△BPC中,∵,∴,又∵BP、CP分别是邻BC三分线和邻BC三分线,∴,∴,∴,在△ABC中,,∴.(3)分4种情况进行画图计算:情况一:如图①,当BP和CP分别是“邻AB三分线”、“邻AC三分线”时,∴;情况二:如图②,当BP和CP分别是“邻BC三分线”、“邻CD三分线”时,∴;情况三:如图③,当BP和CP分别是“邻BC三分线”、“邻AC三分线”时,∴;情况四:如图④,当BP和CP分别是“邻AB三分线”、“邻CD三分线”时,;综上所述:的度数为:或或或.【点睛】本题考查了三角形的外角性质,解决本题的关键是掌握并灵活运用三角形的外角性质,注意要分情况讨论.9.(1)不变,135°;(2)①90°;②60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AC、BC分别是∠BAO和∠ABO角的平分线得出∠BAC=∠OAB解析:(1)不变,135°;(2)①90°;②60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AC、BC分别是∠BAO和∠ABO角的平分线得出∠BAC=∠OAB,∠ABC=∠ABO,由三角形内角和定理即可得出结论;(2)①由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAD的角平分线可知∠EAF=90°;②在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河东区2024山东临沂市河东区部分事业单位招聘综合类岗位人员14人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 新疆2024上半年新疆阿克苏地区引进急需紧缺人才(964人)笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 厦门市2024福建厦门市集美区金融事务中心人员招聘1人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 东港区2024年山东日照市东港区事业单位公开招聘工作人员(44人)笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 2025福建福州城投供应链集团社会招聘2人笔试历年典型考点题库附带答案详解
- 2025年甘肃公航旅石化能源有限公司校园招聘11人笔试历年备考题库附带答案详解
- 2025安徽芜湖凤鸣控股集团有限公司下属子公司校园招聘及笔试历年典型考点题库附带答案详解
- 2025中国西电集团及中国西电所属企业招聘笔试历年常考点试题专练附带答案详解
- 2026年山西青年职业学院单招职业技能笔试模拟试题带答案解析
- 2026年许昌职业技术学院高职单招职业适应性考试模拟试题带答案解析
- 自然资源部所属单位2026年度公开招聘工作人员备考题库(第一批634人)含答案详解
- 2026课件-人工智能通识 教案 模块四-教学设计-人工智能通识-新版
- 加油站合伙合同协议书范本
- 细胞治疗课件
- 人教版八年级下册数学期末试卷测试卷(含答案解析)
- 2025年电商财务统一管理方案报告-帆软
- 2025内蒙古交通集团有限公司社会化招聘168人笔试考试参考试题及答案解析
- 2025广东东莞市东城街道办事处2025年招聘23人模拟笔试试题及答案解析
- 门店关闭清算协议书
- 2026年内蒙古建筑职业技术学院单招职业适应性测试题库带答案
- 2025年消防设施操作员中级理论考试1000题(附答案)
评论
0/150
提交评论