版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)苏教七年级下册期末解答题压轴数学测试试卷经典套题答案一、解答题1.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、.(1)当点与点、在一直线上时,,,则_____.(2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论.2.如图所示,已知射线.点E、F在射线CB上,且满足,OE平分(1)求的度数;(2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数.若不存在,请说明理由.3.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.4.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.(1)=;(2)如图2,点C、D是、角平分线上的两点,且,求的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若,,且,求n的值.5.如图,直线,一副直角三角板中,.(1)若如图1摆放,当平分时,证明:平分.(2)若如图2摆放时,则(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.6.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E=°;(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠FAH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值.7.已知:如图1直线、被直线所截,.(1)求证:;(2)如图2,点E在,之间的直线上,P、Q分别在直线、上,连接、,平分,平分,则和之间有什么数量关系,请直接写出你的结论;(3)如图3,在(2)的条件下,过P点作交于点H,连接,若平分,,求的度数.8.(概念认识)如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.(问题解决)(1)如图②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分线BD交AC于点D,求∠BDC的度数;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻BC三分线和∠ACB邻BC三分线,且∠BPC=140°,求∠A的度数;(延伸推广)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°(),∠B=54°,直接写出∠BPC的度数.(用含m的代数式表示)9.已知:直线l分别交AB、CD与E、F两点,且AB∥CD.(1)说明:∠1=∠2;(2)如图2,点M、N在AB、CD之间,且在直线l左侧,若∠EMN+∠FNM=260°,①求:∠AEM+∠CFN的度数;②如图3,若EP平分∠AEM,FP平分∠CFN,求∠P的度数;(3)如图4,∠2=80°,点G在射线EB上,点H在AB上方的直线l上,点Q是平面内一点,连接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接写出∠GQH的度数.10.已知:直线,点E,F分别在直线AB,CD上,点M为两平行线内部一点.(1)如图1,∠AEM,∠M,∠CFM的数量关系为________;(直接写出答案)(2)如图2,∠MEB和∠MFD的角平分线交于点N,若∠EMF等于130°,求∠ENF的度数;(3)如图3,点G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足,,设∠EMF=α,求∠H的度数(用含α的代数式表示).【参考答案】一、解答题1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出=60°,计算∠PFD即可;(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点与点、在一直线上时,作图如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.2.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;(2解析:(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2.(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.【详解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不发生变化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.3.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.4.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.【详解】解:(1)如图:过O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分别延长AC、CD交GH于点E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)设FB交MN于K,∵,则;∴∵,∴,,在△FAK中,,∴,∴.经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.5.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.6.(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根据角平分线的定义可得∠CAF=∠DAC,∠ACE=∠ACB,设∠CAF=x,∠ACE=y,根据已知可推导得出x﹣y=45,再解析:(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根据角平分线的定义可得∠CAF=∠DAC,∠ACE=∠ACB,设∠CAF=x,∠ACE=y,根据已知可推导得出x﹣y=45,再根据三角形外角的性质即可求得答案;(2)①根据角平分线的尺规作图的方法作出图形即可;②如图2,由CF平分∠ECB可得∠ECF=y,再根据∠E+∠EAF=∠F+∠ECF以及∠E+∠EAB=∠B+∠ECB,可推导得出45°+=∠F+y,由此即可求得答案;(3)如图3,设∠FAH=α,根据AF平分∠EAB可得∠FAH=∠EAF=α,根据已知可推导得出∠FCH=α﹣22.5①,α+22.5=30+∠FCH+∠FPH②,由此可得∠FPH=,再根据∠FCH=m∠FAH+n∠FPH,即可求得答案.【详解】(1)如图1,∵EA平分∠DAC,EC平分∠ACB,∴∠CAF=∠DAC,∠ACE=∠ACB,设∠CAF=x,∠ACE=y,∵∠B=90°,∴∠ACB+∠BAC=90°,∴2y+180﹣2x=90,x﹣y=45,∵∠CAF=∠E+∠ACE,∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案为45;(2)①如图2所示,②如图2,∵CF平分∠ECB,∴∠ECF=y,∵∠E+∠EAF=∠F+∠ECF,∴45°+∠EAF=∠F+y①,同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,∴∠EAF=②,把②代入①得:45°+=∠F+y,∴∠F=67.5°,即∠AFC=67.5°;(3)如图3,设∠FAH=α,∵AF平分∠EAB,∴∠FAH=∠EAF=α,∵∠AFM=∠AFC=×67.5°=22.5°,∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.5+∠FCH,∴∠FCH=α﹣22.5①,∵∠AHN=∠AHC=(∠B+∠BCH)=(90+2∠FCH)=30+∠FCH,∵∠FAH+∠AFM=∠AHN+∠FPH,∴α+22.5=30+∠FCH+∠FPH,②把①代入②得:∠FPH=,∵∠FCH=m∠FAH+n∠FPH,α﹣22.5=mα+n,解得:m=2,n=﹣3.【点睛】本题考查了三角形内角和定理、三角形外角的性质、基本作图——角平分线等,熟练掌握三角形内角和定理以及三角形外角的性质、结合图形进行求解是关键.7.(1)证明见解析;(2),理由见解析;(3).【分析】(1)只需要证明即可证明;(2)作.由平行线的性质即可证明,同理可证明,由此再根据角平分线的定义和平角的性质可得;(3)设,.,则,想办解析:(1)证明见解析;(2),理由见解析;(3).【分析】(1)只需要证明即可证明;(2)作.由平行线的性质即可证明,同理可证明,由此再根据角平分线的定义和平角的性质可得;(3)设,.,则,想办法构建方程即可解决问题;【详解】解:(1)如图1中,,,,.(2)结论:如图2中,.理由:作.,,,,,,,同理可证:,∵平分,平分,,,∵,,;(3)设,.,∵,∴,∵,∴,,,,平分,,,平分,,,,,,.【点睛】本题考查平行线的判定和性质,角平分线的定义等知识,(2)中能正确作出辅助线是解题关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题关键.8.(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根据题意可得的三分线有两种情况,画图根据三角形的外角性质即可得的度数;(2)根据、分别是邻三分线和邻解析:(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根据题意可得的三分线有两种情况,画图根据三角形的外角性质即可得的度数;(2)根据、分别是邻三分线和邻三分线,且可得,进而可求的度数;(3)根据的三分线所在的直线与的三分线所在的直线交于点.分四种情况画图:情况一:如图①,当和分别是“邻三分线”、“邻三分线”时;情况二:如图②,当和分别是“邻三分线”、“邻三分线”时;情况三:如图③,当和分别是“邻三分线”、“邻三分线”时;情况四:如图④,当和分别是“邻三分线”、“邻三分线”时,再根据,,根据三角形外角性质,即可求出的度数.【详解】解:(1)如图,当BD是“邻AB三分线”时,;当BD是“邻BC三分线”时,;(2)在△BPC中,∵,∴,又∵BP、CP分别是邻BC三分线和邻BC三分线,∴,∴,∴,在△ABC中,,∴.(3)分4种情况进行画图计算:情况一:如图①,当BP和CP分别是“邻AB三分线”、“邻AC三分线”时,∴;情况二:如图②,当BP和CP分别是“邻BC三分线”、“邻CD三分线”时,∴;情况三:如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国市政工程华北设计研究总院有限公司招聘备考题库及参考答案详解
- 2026年国投云网数字科技有限公司招聘备考题库及一套参考答案详解
- 2026年安龙县桂中石化招聘5名加油员、3名洗车工备考题库及1套完整答案详解
- 2026年上海交通大学变革性分子前沿科学中心樊春海院士姚广保课题组招聘科研助理备考题库及1套参考答案详解
- 2026年吉林大学白求恩第一医院呼吸与危重症医学科技术员招聘备考题库完整参考答案详解
- 2026年北海市铁山港区(临海)工业区人民医院招聘备考题库及参考答案详解1套
- 2026年吉安市市直机关事业单位编外工作人员招聘备考题库(四十九)及1套参考答案详解
- 2026年复旦大学附属华东医院《老年医学与保健》专职编辑招聘备考题库含答案详解
- 2026年内江建工集团有限责任公司招聘备考题库及完整答案详解一套
- 2026年大连理工大学经济管理学院团队专职科研岗位自聘人员招聘备考题库及完整答案详解一套
- 桂林学院《新时代中国特色社会主义与实践》2024-2025学年第一学期期末试卷
- 企业无违规经营声明范本模版
- 2025年医疗器械直调申请表
- 道桥模拟考试题与答案
- 毕业设计(论文)-基于PLC的医院病房呼叫系统设计
- 外出党员属地管理制度
- 物理●海南卷丨2021年海南省普通高中学业水平选择性考试高考物理真题试卷及答案
- 建筑工程质量通病防治手册(含图)
- 张力放线施工方案
- 软件系统试运行报告模板
- 《肾脏病学概论》课件
评论
0/150
提交评论