版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)数学苏教七年级下册期末复习必考知识点真题A卷一、选择题1.下列运算正确的是()A. B. C. D.2.如图所示,若平面上4条两两相交,且无三线共点的4条直线,则共有同旁内角的对数为()A.12对 B.15对 C.24对 D.32对3.已知方程组的解是,则方程组的解是()A. B. C. D.4.已知,那么的值是()A.9 B. C. D.5.若数使关于的不等式组有且只有四个整数解,则的取值范围是()A.或 B.C. D.6.下列命题中,真命题的个数有同旁内角互补;若,则;直角都相等;相等的角是对顶角.A.1个 B.2个 C.3个 D.4个7.有一列按一定规律排列的式子:﹣3m,9m,﹣27m,81m,﹣243m,…,则第n个式子是()A.(﹣3)nm B.(﹣3)n+1m C.3nm D.﹣3nm8.如图,,点E是边DC上一点,连接AE交BC的延长线于点H,点F是边AB上一点,使得,作的角平分线交BH于点G,若,则的度数是()A. B. C. D.二、填空题9.计算:=______.10.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的是_____(填序号)11.若一个多边形的内角和比外角和大180°,则这个多边形的边数为_____.12.因式分解:_________.13.已知是关于、的二元一次方程组的解,则______.14.如图,在一块长方形草地上原有一条等宽的笔直小路,现在要把这条小路改为同样宽度的等宽弯曲小路,则改造后小路的长度_____,草地部分的面积_____.(填“变大”,“不变”或“变小”)15.如果三角形两条边分别为3和5,则周长L的取值范围是________16.如图,已知,平分,,则的度数是________.17.计算:(1).(2)18.分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.19.解方程组(1)(2)20.已知,以二元一次方程组的解为坐标的点在第一象限,求的取值范围.三、解答题21.已知:如图,CD⊥AB,FG⊥AB,垂足分别为D、G,点E在AC上,且∠1=∠2.(1)求证:DEBC;(2)如果∠B=46°,且∠A比∠ACB小10°,求∠DEC的度数.22.某商店决定购进A、B两种纪念品.若购进A种纪念品8件,B种纪念品3件,需要95元;若购进A种纪念品5件,B种纪念品6件,需要80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)23.为了净化空气,美化校园环境,某学校计划种植,两种树木.已知购买棵种树木和棵种树木共花费元;购买棵种树木和棵种树木共花费元.(1)求,两种树木的单价分别为多少元(2)如果购买种树木有优惠,优惠方案是:购买种树木超过棵时,超出部分可以享受八折优惠.若该学校购买(,且为整数)棵种树木花费元,求与之间的函数关系式.(3)在(2)的条件下,该学校决定在,两种树木中购买其中一种,且数量超过棵,请你帮助该学校判断选择购买哪种树本更省钱.24.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.(1)若点E的位置如图1所示.①若∠ABE=60°,∠CDE=80°,则∠F=°;②探究∠F与∠BED的数量关系并证明你的结论;(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是.(3)若点E的位置如图3所示,∠CDE为锐角,且,设∠F=α,则α的取值范围为.25.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E=°;(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠FAH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值.【参考答案】一、选择题1.A解析:A【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方等知识点进行判定即可.【详解】解:A.,选项符合题意;B.,选项不符合题意;C.,选项不符合题意;D.,选项不符合题意;故选A.【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、积的乘方的运算,熟练掌握运算法则是解本题的关键.2.C解析:C【分析】一条直线与另3条直线相交(不交于一点),有3个交点.每2个交点决定一条线段,共有3条线段.4条直线两两相交且无三线共点,共有条线段.每条线段两侧各有一对同旁内角,可知同旁内角的总对数.【详解】解:平面上4条直线两两相交且无三线共点,共有条线段.又每条线段两侧各有一对同旁内角,共有同旁内角(对.故选:C.【点睛】本题考查了同旁内角的定义.解题的关键是注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.3.D解析:D【分析】将方程组变形,设,结合题意得出m=3,n=4,即可求出x,y的值.【详解】解:方程组可以变形为:方程组设,则方程组可变为,∵方程组的解是,∴方程组的解是,∴,解得:x=5,y=10,故选:D.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.4.A解析:A【分析】由a2+a-3=0,变形得到a2=-(a-3),a2+a=3,先把a2=-(a-3)代入整式得到a2(a+4)=-(a-3)(a+4),利用乘法得到原式=-(a2+a-12),再把a2+a=3代入计算即可.【详解】解:∵a2+a-3=0,∴a2=-(a-3),a2+a=3,a2(a+4)=-(a-3)(a+4)=-(a2+a-12)=-(3-12)=9.故选:A.【点睛】本题考查了整式的混和运算及其化简求值:先把已知条件变形,用底次代数式表示高次式,然后整体代入整式进行降次,进行整式运算求值.5.D解析:D【分析】先解出每个不等式的解集,再根据不等式组的解集得出a的取值范围即可.【详解】解:不等式组,解①得:x<5,解②得:x≥,∵该不等式组有且只有四个整数解,∴0<≤1,解得:﹣2<a≤2,故选:D.【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式的解法,正确得出关于a的一元一次不等式组是解答的关键.6.A解析:A【解析】【分析】根据同旁内角的定义、直角的性质、对顶角的判定,有理数的运算一一判断即可解决问题;【详解】解:同旁内角互补;是假命题,两直线平行,同旁内角互补;若,则;是假命题,时,;直角都相等;是真命题;相等的角是对顶角是假命题.故选:A.【点睛】本题考查同旁内角的定义、直角的性质、对顶角的判定,有理数的运算等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.A解析:A【分析】根据观察,可发现规律:系数是(−3)n,字母因式均为m,可得答案.【详解】由﹣3m,9m,﹣27m,81m,﹣243m,…,得出规律:系数分别是(﹣3)1,(﹣3)2,(﹣3)3,(﹣3)4,(﹣3)5,…,字母因式均为m,∴第n个式子是(﹣3)nm;故选:A.【点睛】本题考查了单项式,观察式子发现规律是解题关键.8.B解析:B【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°-∠AED-∠BEG=180°-2β,在△AEF中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.【详解】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°-∠FEG-∠BEG=180°-2β,在△AEF中,在△AEF中,80°+2α+180-2β=180°故β-α=40°,而∠BEG=∠FEG-∠FEB=β-α=40°,故选:B.【点睛】此题考查平行线的性质,解题关键是落脚于△AEF内角和为180°,即100°+2α+180°-2β=180°,题目难度较大.二、填空题9.【分析】根据整式的乘法运算法则即可求解.【详解】=故答案为:.【点睛】此题主要考查整式的乘法,解题的关键是熟知单项式乘单项式的运算法则.10.①③【详解】分析:分别根据平行线的性质、对顶角及邻补角的定义、平行公理及推论对各小题进行逐一分析即可.详解:①符合对顶角的性质,故①正确;②两直线平行,内错角相等,故②错误;③符合平行线的判定定理,故③正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故④错误.故答案为①③.点睛:本题考查的是平行线的性质、对顶角及邻补角的定义、平行公理及推论,熟知以上各知识点是解答此题的关键.11.五【分析】设该多边形的边数为n,则其内角和为(n﹣2)•180°,外角和为360°,根据题意列方程求解即可.【详解】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=180°,解得n=5,故答案为:五.【点睛】本题考查多边形的内角和与外角和,掌握多边形的内角和公式以及多边形的外角和是解题的关键.12.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.13.-5【分析】根据题意直接将x与y的值代入原方程组并解出a-b和a+b的值,进而利用平方差公式计算即可求出答案.【详解】解:由题意将代入,∴,∴.故答案为:-5.【点睛】本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解的定义以及运用平方差公式进行计算.14.变大不变【分析】根据两点之间,线段最短即可判断改造后小路的长度变化,根据平移的性质即可判断草地部分的面积变化.【详解】解:根据两点之间,线段最短可得改造后小路的长度变大,设长方形的草地的长为a,宽为b,第一个图形改造后草地的面积是a(b-1),将第二个图形根据平移的性质可知改造后草地的面积也是a(b-1),所以改造后草地部分的面积不变.故答案为:变大;不变.【点睛】本题考查了平移的性质和两点之间,线段最短等知识,正确理解题意、灵活应用平移的性质是解题的关键.15.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为:10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.16.55°.【分析】根据平行的性质可求得,根据平分,可得,根据三角形内角和可得.【详解】解:∵,,∴,∵平分,∴,∴,故答案是:.【点睛】本题考查的是平行线的性质,三角形内角和,熟解析:55°.【分析】根据平行的性质可求得,根据平分,可得,根据三角形内角和可得.【详解】解:∵,,∴,∵平分,∴,∴,故答案是:.【点睛】本题考查的是平行线的性质,三角形内角和,熟悉相关行政是解题的关键.17.(1);(2)-4【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)根据有理数的乘方、负整数指数幂、零指数幂、绝对值可以解答本题.【详解】解:(1)(﹣ab2)3•(﹣9a3解析:(1);(2)-4【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)根据有理数的乘方、负整数指数幂、零指数幂、绝对值可以解答本题.【详解】解:(1)(﹣ab2)3•(﹣9a3bc)÷(﹣3a3b5)=(﹣a3b6)•(﹣9a3bc)÷(﹣3a3b5)=﹣3a3b2c;(2)﹣22+﹣(π﹣5)0﹣|﹣3|=﹣4+4﹣1﹣3=﹣4.【点睛】本题考查了负整数指数幂、零指数幂、积的乘方、同底数幂的乘除法,解题的关键是熟练掌握运算法则进行解题.18.(1)3x(x﹣2);(2)(x+4y)2(x﹣4y)2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【详解】解:解析:(1)3x(x﹣2);(2)(x+4y)2(x﹣4y)2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【详解】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.19.(1);(2).【分析】(1)利用代入消元法解二元一次方程组即可得;(2)利用加减消元法解二元一次方程组即可得.【详解】解:(1),将①代入②得:,解得,将代入①得:,则方程组的解解析:(1);(2).【分析】(1)利用代入消元法解二元一次方程组即可得;(2)利用加减消元法解二元一次方程组即可得.【详解】解:(1),将①代入②得:,解得,将代入①得:,则方程组的解为;(2),由③④得:,解得,将代入③得:,解得,则方程组的解为.【点睛】本题考查了利用消元法解二元一次方程组,熟练掌握消元法是解题关键.20.【分析】解关于x、y的二元一次方程组,得x与y,再根据点在第一象限的坐标特征即可得到关于k的一元一次不等式组,解不等式组即可.【详解】解方程组得,由题意知,,∴,解不等式组得,.【点解析:【分析】解关于x、y的二元一次方程组,得x与y,再根据点在第一象限的坐标特征即可得到关于k的一元一次不等式组,解不等式组即可.【详解】解方程组得,由题意知,,∴,解不等式组得,.【点睛】本题考查了二元一次方程组的解法,一元一次不等式的解法,点在各个象限的坐标特征等知识,难点在于解含有参数k的二元一次方程组.三、解答题21.(1)见解析;(2)108°【分析】(1)根据CD⊥AB,FG⊥AB,可判定CD∥FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,故可证平行;(2)根据三角解析:(1)见解析;(2)108°【分析】(1)根据CD⊥AB,FG⊥AB,可判定CD∥FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,故可证平行;(2)根据三角形内角和求出∠ACB=72°,再根据平行线的性质即可求解.【详解】解:(1)证明:∵CD⊥AB,FG⊥AB,∴CD∥FG.∴∠2=∠BCD,又∵∠1=∠2,∴∠1=∠BCD,∴DE∥BC.(2)∵∠B=46°,∠ACB-10°=∠A,∴∠ACB+(∠ACB-10°)+46°=180°,∴∠ACB=72°,由(1)知,DE∥BC,∴∠DEC+∠ACB=180°,∴∠DEC=108°.【点睛】此题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“两直线平行,同旁内角互补”是解题的关键.22.(1)A、B两种纪念品的价格分别为10元和5元;(2)该商店共有3种进货方案(3)若时,购进52件A纪念品,48件B纪念品获利最大;若时,购进50件A纪念品,50件B纪念品获利最大;若时,此时三种进解析:(1)A、B两种纪念品的价格分别为10元和5元;(2)该商店共有3种进货方案(3)若时,购进52件A纪念品,48件B纪念品获利最大;若时,购进50件A纪念品,50件B纪念品获利最大;若时,此时三种进货方案获利相同.【分析】(1)设A种纪念品每件x元,B种纪念品每件y元,根据购进A种纪念品8件,B种纪念品3件,需要95元和购进A种纪念品5件,B种纪念品6件,需要80元,列出方程组,再进行求解即可;(2)设商店最多可购进A纪念品m件,则购进B纪念品(100-m)件,根据购买这100件纪念品的资金不少于750元,但不超过764元,列出不等式组,再进行求解即可;(3)将总利润y表示成所进A纪念品件数x的函数,分类讨论,根据函数的单调性判断那种方案利润最大.【详解】解:(1)设A、B两种纪念品的价格分别为x元和y元,则,解得.答:A、B两种纪念品的价格分别为10元和5元.(2)设购买A种纪念品m件,则购买B种纪念品(100-m)件,则750≤10m+5(100-m)≤764,解得50≤m≤52.8,∵m为正整数,∴m=50,51,52,即有三种方案.第一种方案:购A种纪念品50件,B种纪念品50件;第二种方案:购A种纪念品51件,B种纪念品49件;第三种方案:购A种纪念品52件,B种纪念品48件;(3)设商家购进x件A纪念品,所获利润为y,则y=ax+(100-x)(5-a)=(2a-5)x+500-100a.∵商家出售的纪念品均不低于成本,,即0≤a≤5.①若2a-5>0即时,y=(2a-5)x+500-100a,y随x增大而增大.此时购进52件A纪念品,48件B纪念品获利最大.②若2a-5<0,即时,y=(2a-5)x+500-100a,y随x增大而减小.此时购进50件A纪念品,50件B纪念品获利最大.③若2a-5=0,即时,则y=250,为常数函数,此时三种进货方案获利相同.【点睛】本题考查二元一次方程组的应用,一元一次不等式组的应用和一次函数的应用.(1)能根据题意找出合适的等量关系是解决此问的关键;(2)能根据“资金不少于750元,但不超过764元”建立不等式组是解题关键;(3)中能分类讨论是解决此问的关键.23.(1)种树木的单价为80元,种树木的单价为72元;(2);(3)当时,选择购买种树木更省钱;当时,选择购买两种树木的费用相同;当时,选择购买种树木更省钱.【分析】(1)设种树每棵元,种树每棵元,解析:(1)种树木的单价为80元,种树木的单价为72元;(2);(3)当时,选择购买种树木更省钱;当时,选择购买两种树木的费用相同;当时,选择购买种树木更省钱.【分析】(1)设种树每棵元,种树每棵元,根据“购买20棵种树木和15棵种树木共花费2680元;购买10棵种树木和20棵种树木共花费2240元”列出方程组并解答;(2)分,两种情况根据(1)求出的单价即可得与之间的函数关系式;(3)根据种树的单价和(2)求得的函数关系式进行解答即可.【详解】解:(1)设种树木的单价为元,种树木的单价为元.根据题意,得,解得:,答:种树木的单价为80元,种树木的单价为72元;(2)根据题意得,当时,;当时,,与之间的函数关系式为;(3)当时,解得:,即当时,选择购买种树木更省钱;当时,解得:,即当时,选择购买两种树木的费用相同;当时,解得:,即当时,选择购买种树木更省钱.答:当时,选择购买种树木更省钱;当时,选择购买两种树木的费用相同;当时,选择购买种树木更省钱.【点睛】本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.24.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.【详解】(1)①过F作FG//AB,如图:∵AB∥CD,FG∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案为:70;②∠F=∠BED,理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如图,∵∠CDE为锐角,DF是∠CDE的角平分线,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案为:.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.25.(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训讲师试讲课件模板
- 华为工作培训
- 交通安全英文课件
- 关于秋天的课件介绍
- 2025 小学一年级数学下册复习课(易错题型突破)课件
- 2025 小学一年级数学下册位置综合应用课件
- 医生的临床经验分享
- 2026下初中英语教师资格证面试试题及答案
- 2026年服装品牌总经理招聘的常见问题与答案
- 2026年广告投放专员面试题集
- 模切管理年终工作总结
- 杉木容器育苗技术规程
- 售后工程师述职报告
- 专题12将军饮马模型(原卷版+解析)
- 粉刷安全晨会(班前会)
- (中职)中职生创新创业能力提升教课件完整版
- 部编版八年级语文上册课外文言文阅读训练5篇()【含答案及译文】
- 高三英语一轮复习人教版(2019)全七册单元写作主题汇 总目录清单
- 路基工程危险源辨识与风险评价清单
- NB-T+10131-2019水电工程水库区工程地质勘察规程
- 大学基础课《大学物理(一)》期末考试试题-含答案
评论
0/150
提交评论