(完整版)数学初中苏教七年级下册期末综合测试试卷经典套题_第1页
(完整版)数学初中苏教七年级下册期末综合测试试卷经典套题_第2页
(完整版)数学初中苏教七年级下册期末综合测试试卷经典套题_第3页
(完整版)数学初中苏教七年级下册期末综合测试试卷经典套题_第4页
(完整版)数学初中苏教七年级下册期末综合测试试卷经典套题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(完整版)数学初中苏教七年级下册期末综合测试试卷经典套题一、选择题1.下列计算中,正确的是()A. B. C. D.2.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠2和∠4 B.∠6和∠4 C.∠2和∠6 D.∠6和∠33.若关于、的方程组的解是方程的一个解,则的值为()A.2 B.-2 C.1 D.-14.已知a>b>c,则下列结论不一定成立的是()A.a+c>b+c B.ac>bc C.4a-c>4b-c D.c-2a<c-2b5.已知关于x的不等式组有且只有三个整数解,则a的取值范围是()A.-2≤a≤-1 B.-2≤a≤-1 C.-2<a≤-1 D.-2<a<-16.下列给出4个命题:①内错角相等;②对顶角相等;③对于任意实数,代数式总是正数;④若三条线段、、满足,则三条线段、、一定能组成三角形.其中正确命题的个数是()A.1个 B.2个 C.3个 D.4个7.观察下列式子:4×6-2×4=4×4;6×8-4×6=6×4;8×10-6×8=8×4;…若第n个等式的右边的值大于180,则n的最小值是()A.20 B.21 C.22 D.238.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=85°,则∠2的度数()A.24° B.25° C.30° D.35°二、填空题9.计算:=_______.10.命题“同旁内角相等,两直线平行”是__________________(填“真”或“假”)命题﹒11.一个正多边形的内角和是外角和的2倍,其它的边数为______.12.已知m=2n2+a,n=2m2+a,且m≠n,则m2+2mn+n2的值为_____.13.若关于,的二元一次方程组的解为正数,则的取值范围为__.14.如下图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是,理由是______.15.双塔寺又名永祚寺,创建于明万历三十六年(公元1608年),现为国家级文物保护单位,由于寺内双塔高耸,故俗称双塔寺,成为太原市的标志性建筑.主塔平面呈八角,其俯视图形状为正八边形(如图所示),则该八边形一个内角的度数为___________.16.如图,与的大小关系为:______.17.计算:(1).(2).18.因式分解:(1)(2)n2(m﹣2)+4(2﹣m)19.解方程组(1);(2).20.解不等式组:,并写出它的整数解.三、解答题21.已知,中,,平分,是上一点,于,(1)当与重合时,如图1,①若,,求的度数;②问与,之间有何关系?请证明你的结论;(2)如图2,是延长线上一点,若,于点,试探究与的关系.22.为了让市民树立起“珍惜水、节约水、保护水”的用水理念,居民生活用水按阶梯式计算水价,水价计算方式如表所示,每吨水还需另加污水处理费元.已知乐乐家月份用水吨,交水费元;月份用水吨,交水费元.(提示:水费=水价+污水处理费)用水量水价(元/吨)不超过吨超过吨且不超过吨的部分超过吨的部分(1)求,的值;(2)为了节省开支,乐乐计划把月份的水费控制在不超过家庭月收入的.若乐乐家的月收入为元,则乐乐家月份最多能用水多少吨?23.某车行经营A,B两种型号的电瓶车,已知A型车和B型车的进货价格分别为1500元和2500元.(1)该车行去年A型车销售总额为8万元,今年A型车每辆售价比去年降低200元,若今年A型车的销售量与去年相同,则A型车销售额将比去年减少10%,求去年每辆A型车的售价.(2)今年第三季度该车行计划用3万元再购进A,B两种型号的电瓶车若干辆,问:①一共有几种进货方案;②在(1)的条件下,已知每辆B型车的利润率为24%,①中哪种方案利润最大,最大利润是多少?(利润=售价﹣成本,利润率=利润÷成本×100%).24.如图,在中,是高,是角平分线,,.()求、和的度数.()若图形发生了变化,已知的两个角度数改为:当,,则__________.当,时,则__________.当,时,则__________.当,时,则__________.()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论.25.模型规律:如图1,延长交于点D,则.因为凹四边形形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,,则__________;②如图3,__________;(2)拓展应用:①如图4,、的2等分线(即角平分线)、交于点,已知,,则__________;②如图5,、分别为、的10等分线.它们的交点从上到下依次为、、、…、.已知,,则__________;③如图6,、的角平分线、交于点D,已知,则__________;④如图7,、的角平分线、交于点D,则、、之同的数量关系为__________.【参考答案】一、选择题1.D解析:D【分析】根据幂的乘方与积的乘方法则,求出每个式子的值,即可判断,得到答案.【详解】解:A.,故此项错误;B.,故此项错误;C.,故此项错误;D.,故此项正确;、故选:D.【点睛】本题考查了幂的乘方和积的乘方等知识点,能正确求出每个式子的值是解此题的关键.2.A解析:A【分析】同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案.【详解】解:∵直线AD,BE被直线BF和AC所截,∴∠1与∠2是同位角,∠5与∠4是内错角,故选A.【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.3.A解析:A【详解】(1)−(2)得:6y=−3a,∴y=−,代入(1)得:x=2a,把y=−,x=2a代入方程3x+2y=10,得:6a−a=10,即a=2.故选A.4.B解析:B【分析】根据不等式的性质解答即可.【详解】解:A、若a>b,则a+c>b+c,根据不等式的性质1可知原变形正确,故此选项不符合题意;B、若a>b,则ac>bc,只有当c>0时成立,根据不等式的性质2和3可知原变形错误,故此选项符合题意;C、若a>b,则4a-c>4b-c,根据不等式的性质1和2可知原变形正确,故此选项不符合题意;D、若a>b,则c-2a<c-2b,根据不等式的性质1和3可知原变形正确,故此选项不符合题意;故选:B.【点睛】本题考查了不等式的性质.解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.C解析:C【分析】先由不等式组解得x的范围,然后结合不等式组有且只有三个整数解得到a的取值范围.【详解】解:由不等式组得,又不等式组有且只有三个整数解,且,∴不等式组的整数解应该是3、4、5三个数,又,∴,即,故选C.【点睛】本题考查不等式的解集,根据不等式组有且只有三个整数解3、4、5及确定是解题关键.6.B解析:B【解析】①两直线平行,内错角相等,故错误;②对顶角相等,正确;③对于任意实数x,代数式=(x−3)2+1总是正数,正确;④若三条线段a、b、c满足a+b>c,则三条线段a、b、c一定能组成三角形,错误,故选B.点睛:本题考查了命题与定理的知识,解题的关键是利用平行线的性质、对顶角的性质、三角形的三边关系等知识分别判断后即可确定正确的选项.注意:要说明一个没命题的正确性,一般需要推理、论证,二判断一个命题是假命题,只需举出一个范例即可.7.C解析:C【分析】根据规律确定第n个等式:2(n+1)(2n+4)-2n(2n+2)=2(n+1)×4,根据第n个等式的右边的值大于180,列不等式可得结论.【详解】解:第1个式子:4×6-2×4=4×4;第2个式子:6×8-4×6=6×4;第3个式子:8×10-6×8=8×4;…∴第n个等式:2(n+1)(2n+4)-2n(2n+2)=2(n+1)×4;∵第n个等式的右边的值大于180,即2(n+1)×4>180,n>21.5,∴n的最小值是22.故选:C.【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键,注意n的值为正整数,在解得n>21.5时,要注意向上取整.8.D解析:D【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=85°,∴∠2=120°-85°=35°.故选D.【点睛】此题主要考查了翻折变换,关键是根据题意得到翻折以后,哪些角是对应相等的.二、填空题9.【解析】原式.10.假【分析】利用平行线的判定对命题进行判断即可确定答案.【详解】同旁内角互补,两直线平行是真命题.故答案为∶假﹒【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质,难度比较小.11.6【分析】设这个正多边的每一个外角为x°,则每一个内角为2x°,根据内角和外角互补可得x+2x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.【详解】解:设这个正多边的每一个外角为x°,由题意得:x+2x=180,解得:x=60,360°÷60°=6.故答案为6.【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.12.【分析】将已知的两个方程相减,求得m+n的值,再将所求代数式分解成完全平方式,再代值计算.【详解】解:∵m=2n2+a,n=2m2+a,∴m﹣n=2n2﹣2m2,∴(m﹣n)+2(m+n)(m﹣n)=0,∴(m﹣n)[1+2(m+n)]=0,∵m≠n,∴1+2(m+n)=0,∴m+n=﹣,∴m2+2mn+n2=(m+n)2=.故答案为:.【点睛】本题主要考查了求代数式的值,因式分解的应用,关键是由已知求得m+n的值.13.【分析】先求出方程组的解,根据题意得出关于k的不等式组,再求出不等式组的解集即可.【详解】解:解方程组得:,关于,的二元一次方程组的解为正数,,解得:,故答案为:.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和解一元一次不等式组等知识点,能得出关于k的不等式组是解此题的关键.14.B解析:垂线段最短【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短,据此作答即可.【详解】】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∵PB⊥AD,∴PB最短.故答案为:垂线段最短.【点睛】此题主要考查了从直线外一点到这条直线上各点所连的线段中,垂线段最短在生活中的应用.15.135°【分析】首先根据多边形内角和定理:(n-2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.【详解】解:正八边形的内角和为:(8-2)×180°=1080°,解析:135°【分析】首先根据多边形内角和定理:(n-2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.【详解】解:正八边形的内角和为:(8-2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.【点睛】本题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n-2)•180(n≥3)且n为整数).16.>【分析】如图(见解析)延长的一条边,根据三角形外角的性质,即可求解【详解】解:如图延长的一条边,根据三角形外角的性质可得:故答案为>.【点睛】此题考查了三角形外角的性质,掌握三角解析:>【分析】如图(见解析)延长的一条边,根据三角形外角的性质,即可求解【详解】解:如图延长的一条边,根据三角形外角的性质可得:故答案为>.【点睛】此题考查了三角形外角的性质,掌握三角形外角的性质并根据图形构造出角之间的关系是解题的关键.17.(1)-6a2b2c;(2)3.【分析】(1)直接运用单项式乘单项式运算法则计算即可;(2)先运用负整数次幂、零次幂化简,然后再计算即可.【详解】解(1)原式=-6a2b2c;(2)原解析:(1)-6a2b2c;(2)3.【分析】(1)直接运用单项式乘单项式运算法则计算即可;(2)先运用负整数次幂、零次幂化简,然后再计算即可.【详解】解(1)原式=-6a2b2c;(2)原式=(-2)2-1=4-1=3.【点睛】本题主要考查了单项式乘单项式、负整数次幂、零次幂等知识点,灵活运用相关运算法则成为解答本题的关键.18.(1)(2)【分析】(1)先提取公因式,然后再利用完全平方公式进行分解即可;(2)先提取公因式,然后再利用平方差公式进行分解即可【详解】解:(1)=,=.(2)n2(m﹣2)+4解析:(1)(2)【分析】(1)先提取公因式,然后再利用完全平方公式进行分解即可;(2)先提取公因式,然后再利用平方差公式进行分解即可【详解】解:(1)=,=.(2)n2(m﹣2)+4(2﹣m),=,=.【点睛】本题考查了因式分解,解题关键是掌握因式分解的顺序和方法,注意:因式分解要彻底.19.(1);(2)【分析】(1)把①代入②得出2x+2x-3=5,求出x=2,再把x=2代入①求出y即可;(2)①+②×2得出13x=39,求出x,再把x=3代入①求出y即可.【详解】解:(1解析:(1);(2)【分析】(1)把①代入②得出2x+2x-3=5,求出x=2,再把x=2代入①求出y即可;(2)①+②×2得出13x=39,求出x,再把x=3代入①求出y即可.【详解】解:(1),把①代入②,得2x+2x-3=5,解得:x=2,把x=2代入①,得y=2×2-3=1,所以方程组的解是;(2),①+②×2,得13x=39,解得:x=3,把x=3代入①,得9+4y=5,解得:y=-1,所以方程组的解是.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.20.;,,【分析】首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.【详解】解:,由①,,解得:,由②:,,解得:,则不等式组的解集是:.解析:;,,【分析】首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.【详解】解:,由①,,解得:,由②:,,解得:,则不等式组的解集是:.则整数解是:,,.【点睛】本题考查的是一元一次不等式组的解法和整数解,解题的关键是根据的取值范围,得出的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题21.(1)①;②,证明见解析;(2)【分析】(1)①首先根据三角形内角和求出∠BAC的度数,然后根据角平分线的性质求出∠CAE的度数,然后根据直角三角形中两锐角互余求出∠CAN的度数,即可求出∠EA解析:(1)①;②,证明见解析;(2)【分析】(1)①首先根据三角形内角和求出∠BAC的度数,然后根据角平分线的性质求出∠CAE的度数,然后根据直角三角形中两锐角互余求出∠CAN的度数,即可求出∠EAN的度数;②首先根据角平分线的性质得到∠BAE=,然后根据三角形内角和得到∠BAC=180°-∠B-∠C,然后根据∠AEC=∠B+∠BAE,最后根据∠CMN+∠AEN=90°通过角度之间的等量代换即可表示出与,之间的关键.(2)根据直角三角形CMN和CDF得到∠CMN=∠D,然后根据外角的性质和即可得出与的关系.【详解】解:(1)①∵,,∴,又∵平分,∴,∵,,∴,∴;②.证明:∵平分,∴,∵∴∴;(2)∵于点,∴∠CFD=90°,又∵∠MNC=90°,∠MCN=∠DCF,∴∠CMN=∠D,又∵∠ACB=∠D+∠CAD,∠D=∠CAD,∴∠ACB=2∠D,∴∠ACB=2∠CMN,即∠CMN=∠ACB.【点睛】此题考查了三角形内角和定理,角平分线的性质,解题的关键是熟练掌握三角形内角和定理,角平分线的性质.22.(1)m=2.4,n=3.2;(2)小明家月份最多能用水55吨【分析】(1)根据题意,当用水20吨,交水费60元;用水25吨,交水费79元,据此列方程组求解;(2)先求出小明家月份的用水量范围解析:(1)m=2.4,n=3.2;(2)小明家月份最多能用水55吨【分析】(1)根据题意,当用水20吨,交水费60元;用水25吨,交水费79元,据此列方程组求解;(2)先求出小明家月份的用水量范围,再根据月份的水费不超过家庭月收入的2%,列出不等式求解即可.【详解】解:(1)由题意得,解得,即m的值为2.4,n的值为3.2;(2)由(1)得m=2.4,n=3.2,当用水量为30吨时,水费为:20×2.4+10×3.2+30×0.6=98(元),2%×11650=233(元),∵233>98,∴小明家月份用水量超过30吨.可设小明家月份用水x吨,由题意得98+(2×2.4+0.6)(x−30)≤233,解得x≤55,答:小明家月份最多能用水55吨.【点睛】本题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,根据水的收费标准,列方程和不等式求解.23.(1)去年每辆A型车的售价为2000元;(2)①一共有3种进货方案;②方案3的利润最大,最大利润是6900元.【分析】(1)设去年每辆A型车的售价为x元,则今年每辆A型车的售价为(x−200)元解析:(1)去年每辆A型车的售价为2000元;(2)①一共有3种进货方案;②方案3的利润最大,最大利润是6900元.【分析】(1)设去年每辆A型车的售价为x元,则今年每辆A型车的售价为(x−200)元,利用数量=总价÷单价,结合今年A型车的销售量与去年相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)①设购进A型车m辆,B型车n辆,利用总价=单价×数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数,即可得出各进货方案;②利用总利润=每辆的利润×销售数量,即可分别求出选择各方案的总利润,比较后即可得出结论.【详解】解:(1)设去年每辆A型车的售价为x元,则今年每辆A型车的售价为(x−200)元,依题意得:=,解得:x=2000,经检验,x=2000是原方程的解,且符合题意.答:去年每辆A型车的售价为2000元;(2)①设购进A型车m辆,B型车n辆,依题意得:1500m+2500n=30000,∴m=20−n.又∵m,n均为正整数,∴或或,∴一共有3种进货方案,方案1:购进A型车15辆,B型车3辆;方案2:购进A型车10辆,B型车6辆;方案3:购进A型车5辆,B型车9辆.②选择方案1的利润为(2000−200−1500)×15+2500×24%×3=6300(元);选择方案2的利润为(2000−200−1500)×10+2500×24%×6=6600(元);选择方案3的利润为(2000−200−1500)×5+2500×24%×9=6900(元).∵6300<6600<6900,∴方案3的利润最大,最大利润是6900元.【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)①找准等量关系,正确列出二元一次方程;②利用总利润=每辆的利润×销售数量,求出选择各方案的总利润.24.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;(2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)当,时,∵,,∴.∵平分,∴.∵是高,,,;当,时,∵,,∴.∵平分,∴.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论