(完整版)初中苏教七年级下册期末数学重点初中试题经典及解析_第1页
(完整版)初中苏教七年级下册期末数学重点初中试题经典及解析_第2页
(完整版)初中苏教七年级下册期末数学重点初中试题经典及解析_第3页
(完整版)初中苏教七年级下册期末数学重点初中试题经典及解析_第4页
(完整版)初中苏教七年级下册期末数学重点初中试题经典及解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(完整版)初中苏教七年级下册期末数学重点初中试题经典及解析一、选择题1.下列各式中,计算结果为a6的是()A.a2•a3 B.a3+a3 C.a12÷a2 D.(a2)32.如图,和不是同旁内角的是()A. B. C. D.3.已知关于x、y的方程组的解是,则关于m、n方程组的解为()A. B. C. D.4.如图,有A、B、C三种不同型号的卡片,每种各10张.A型卡片是边长为a的正方形,B型卡片是相邻两边长分别为a、b的长方形,C型卡片是边长为b的正方形.从中取出若干张卡片(每种卡片至少一张),把取出的这些卡片拼成一个正方形,所有符合要求的正方形的个数是()A.4 B.5 C.6 D.75.若a使得关于x的不等式组有且仅有2个整数解,且使得关于y的方程4y﹣3a=2(y﹣3)有正数解,则所有满足条件的整数a的个数为()A.6 B.5 C.4 D.36.下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的平分线平行;②在同一平面内,垂直于同一条直线的两条直线互相平行:③过直线外一点有且只有一条直线与已知直线平行:④对顶角相等.A.1个 B.2个 C.3个 D.4个7.一列数…,其中,,,…,(n为不小于2的整数),则()A. B.2 C.2018 D.8.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为()A.6 B.7 C.8 D.9二、填空题9.计算:3x3•(﹣2x)2=_______.10.“两条直线被第三条直线所截,内错角相等”是___命题.(填“真”或“假”)11.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是___边形.12.已知,,则多项式的值是________.13.已知关于的方程组,为常数,给出下列结论:①是方程组的解;②当时,方程组的解也是方程的解;③无论取何值,和的值都不可能互为相反数.其中正确的是_______.(填序号)14.数学知识时刻都在应用,比如跳远运动中的成绩问题,如图,有三名同学甲、乙、丙在同一起跳点P处起跳后的落地脚跟为A,B,C,现在只能有两名同学可以参加比赛,不借助其他测量工具,仅仅根据图形和基本数学原理即可确定人选,这里用到的数学原理是________.15.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x,则x的取值范围是____.16.一副三角板按如图所示叠放在一起,若固定△AOB,将△ACD绕着公共顶点A,按顺时针方向旋转α度(0°<α<180°),当△ACD的一边与△AOB的某一边平行时,相应的旋转角α的值是___.17.计算(1)2-3÷+(﹣)2;(2)(﹣2x3y)2•(﹣3xy2)÷(6x4y3);(3)(2x+1)(2x﹣1)+(x+2)2;(4)2021﹣2020×202218.把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣16;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.19.解方程组:(1);(2).20.解不等式组三、解答题21.如图,已知,B.(1)试判断DE与BC的位置关系,并说明理由(2)若DE平分,,求的度数.22.某商店决定购进A、B两种纪念品.若购进A种纪念品8件,B种纪念品3件,需要95元;若购进A种纪念品5件,B种纪念品6件,需要80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)23.千佛山、趵突泉、大明湖并称济南三大风景名胜区.为了激发学生个人潜能和团队精神,历下区某学校组织学生去千佛山开展为期一天的素质拓展活动.已知千佛山景区成人票每张30元,学生票按成人票五折优惠.某班教师加学生一共去了50人,门票共需810元.(1)这个班参与活动的教师和学生各多少人?(应用二元一次方程组解决)(2)某旅行网上成人票价格为28元,学生票价格为14元,若该班级全部网上购票,能省多少钱?24.已知,,点为射线上一点.(1)如图1,写出、、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点,且:,,,求的度数.25.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+∠A,(请补齐空白处)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.【参考答案】一、选择题1.D解析:D【分析】分别根据同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.【详解】解:A、a2•a3=a5,故本选项不合题意;B、a3+a3=2a3,故本选项不合题意;C、a12÷a2=a10,故本选项不合题意;D、(a2)3=a6,故本选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘除法以及幂的乘方,熟记相关运算法则是解答本题的关键.2.B解析:B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.根据同旁内角的概念可得答案.【详解】解:选项A、C、D中,∠1与∠2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角;选项B中,∠1与∠2的两条边都不在同一条直线上,不是同旁内角.故选:B.【点睛】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U”形.3.A解析:A【分析】根据x、y的方程得到,解方程组即可.【详解】解:由题意得,解得,故选:A.【点睛】此题考查方程组的应用,正确理解关于x、y的方程组与关于m、n方程组的关系是解题的关键.4.C解析:C【分析】每一种卡片10张,并且每种卡片至少取1张,根据完全平方公式的特点可确定拼成的正方形的边长可以为(a+b),(a+2b),(a+3b),(2a+b),(2a+2b),(3a+b)共六种情况.【详解】解:∵每一种卡片10张,并且每种卡片至少取1张拼成正方形,∴正方形的边长可以为:(a+b),(a+2b),(a+3b),(2a+b),(2a+2b),(3a+b)六种情况;(注意每一种卡片至少用1张,至多用10张)即:(a+b)2=a2+2ab+b2,需要A卡片1张,B卡片2张,C卡片1张;(a+2b)2=a2+4ab+4b2,需要A卡片1张,B卡片4张,C卡片4张;(a+3b)2=a2+6ab+9b2,需要A卡片1张,B卡片6张,C卡片9张;(2a+b)2=4a2+4ab+b2,需要A卡片4张,B卡片4张,C卡片1张;(2a+2b)2=4a2+8ab+4b2,需要A卡片4张,B卡片8张,C卡片4张;(3a+b)2=9a2+6ab+b2,需要A卡片9张,B卡片6张,C卡片1张;故选:C.【点睛】本题考查的是完全平方公式的意义和应用,面积法表示完全平方公式是解题的关键.5.B解析:B【分析】解不等式组,利用有且只有2个整数解,确定a的取值范围;解4y﹣3a=2(y﹣3),利用有正数解,也可确定a的取值范围.同时满足两个条件的a的取值范围最终确定,由于a为整数,取a的整数解,结论可得.【详解】解:解不等式组,得,∵不等式组有且只有2个整数解,即x=2,3;∴1<≤2,解得:1<a≤7.∵4y﹣3a=2(y﹣3),解得,y=,∵关于y的方程4y﹣3a=2(y﹣3)有正数解,∴>0,∴a>2,∴2<a≤7,∵a为整数,∴a=3,4,5,6,7.故选:B.【点睛】本题主要考查了一元一次不等式组的解法,含参数的方程的解法.依据已知条件得出a的取值范围是解题的关键.6.C解析:C【分析】利用平行线的性质及判定、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①两条平行直线被第三条直线所截,同位角的平分线平行,故原命题错误,是假命题,不符合题意;②在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,符合题意;③过直线外一点有且只有一条直线与已知直线平行,正确,是真命题,符合题意;④对顶角相等,正确,是真命题,符合题意,真命题有3个,故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解平行线的性质及判定、对顶角的性质,难度不大.7.D解析:D【分析】根据通项公式可以依次求出前几个数,发现每三个数为一个循环,依次为、2、-1,用2020÷3根据商和余数确定结果,如果余数为1,是;如果余数为2,是2,如果整除是-1,从而得出结论.【详解】解:由通项公式,依次代入得:,,,,,发现,每三个数为一个循环,,则的值为;故选:.【点睛】本题是数字类的变化规律题,认真观察、仔细思考,注意从第一个数开始依次计算,善用联想是解决这类问题的方法.8.C解析:C【分析】设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6a2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式将a、b代入,即可得出答案.【详解】解:设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6b2,∵a2+4ab+4b2=(a+2b)2,(b>a)∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C.【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式.二、填空题9.12x5【分析】根据积的乘方运算,同底数幂相乘,单项式乘单项式,把系数和相同字母分别相乘.【详解】解:原式=3x3•4x2=12x5,故答案为:12x5.【点睛】本题考查了积的乘方运算,同底数幂相乘,单项式乘单项式,把系数和相同字母分别相乘是解题的关键.10.假【分析】由正确的题设得出正确的结论是真命题,由正确的题设不能得出正确结论是假命题,判定此命题的正误即可得到答案.【详解】解:∵当两条平行线被第三条直线所截,内错角相等,∴两条直线被第三条直线所截,内错角有相等或不相等两种情况∴原命题错误,是假命题,故答案为假.【点睛】本题考查了判断命题的真假的知识,解题的关键是根据命题作出正确的判断,必要时可以举出反例.11.六【分析】n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【详解】解:设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故答案为:六.【点睛】本题主要考查了多边形的内角和和外角和,解题的关键在于能够熟练掌握多边形内角和与外角和的知识.12.20【分析】将所求代数式因式分解成含已知式子的形式,再整体代入求值即可得解.【详解】解:∵,∴.故答案是:【点睛】本题考查了因式分解中的提取公因式法、整体代入求值法,比较简单,熟练掌握相关知识点是解决问题的关键.13.②③【分析】①将m=6,n=-1代入检验即可做出判断;②将a=2代入方程组求出方程组的解,代入方程中检验即可;③将m和n分别用a表示出来,然后求出m+n=3来判断.【详解】解:①将,代入方程组得:,由①得,由②得,故①不正确.②将代入方程组得:,解此方程得:,将,代入方程,方程左边右边,是方程的解,故②正确.③解方程①②得:解得:将的值代入①得:所以,故无论取何值,、的值都不可能互为相反数故③正确.则正确的选项有②③.故答案为:②③.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14.B解析:垂线段最短【分析】根据垂线段最短可确定跳远距离最近的同学,从而做出选择.【详解】解:由题意可得,B同学跳远距离最近,所以可以确定A和C同学参加比赛,这里用到的数学原理是垂线段最短故答案为:垂线段最短.【点睛】本题考查垂线段最短,掌握垂线段最短的性质应用解决于生活问题是理解关键.15.12<x<20.【分析】根据三角形的三边关系求出c的取值,故可求出周长的取值.【详解】∵a,b,c是△ABC的三边长,a=4,b=6,∴6-4<c<6+4即2<c<10∴周长的范围为1解析:12<x<20.【分析】根据三角形的三边关系求出c的取值,故可求出周长的取值.【详解】∵a,b,c是△ABC的三边长,a=4,b=6,∴6-4<c<6+4即2<c<10∴周长的范围为12<x<20故答案为:12<x<20.【点睛】此题主要考查三角形三边关系的应用,解题的关键是熟知三角形的三边关系的特点.16.15,30,45,75,105,135,150,165.【分析】要分类讨论,不要漏掉一种情况,也可实际用三角板操作找到它们之间的关系;再计算.【详解】分10种情况讨论:解:(1)如图所示,解析:15,30,45,75,105,135,150,165.【分析】要分类讨论,不要漏掉一种情况,也可实际用三角板操作找到它们之间的关系;再计算.【详解】分10种情况讨论:解:(1)如图所示,当时,;(2)如图所示,当时,;(3)如图所示,当时,;(4)如图所示,当时,;(5)如图所示,当时,;(6)如图所示,当时,.(7)DC边与AB边平行时α=60°+90°=150°(8)DC边与AB边平行时α=180°-60°-90°=30°,(9)DC边与AO边平行时α=180°-60°-90°+45°=75°.(10)DC边与AO边平行时α=90°+15°=105°故答案为15,30,45,75,105,135,150,165.【点睛】此题考查旋转的性质.解题关键在于掌握旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.17.(1);(2)-2x3y;(3)5x2+4x+3;(4)1【分析】(1)先算负指数幂和乘方,再算除法,最后算加法;(2)先算乘方,再算乘除即可;(3)先根据平方差公式和完全平方公式进行计算,解析:(1);(2)-2x3y;(3)5x2+4x+3;(4)1【分析】(1)先算负指数幂和乘方,再算除法,最后算加法;(2)先算乘方,再算乘除即可;(3)先根据平方差公式和完全平方公式进行计算,再合并同类项即可.(4)根据平方差公式即可求出答案.【详解】解:(1)原式===;(2)原式=4x6y2•(-3xy2)÷(6x4y3)=-12x7y4÷(6x4y3)=-2x3y;(3)原式=4x2-1+x2+4x+4=5x2+4x+3;(4)原式=20212-(2021-1)×(2021+1)=20212-(20212-1)=20212-20212+1=1.【点睛】本题考查了整式的混合运算,熟练运用完全平方公式和平方差公式是解题的关键.18.(1);(2);(3);(4)【分析】(1)利用提公因式法因式分解即可;(2)先提出负号,再利用完全平方公式法因式分解即可;(3)先提公因式,再利用完全平方公式法因式分解即可;(4)先运用解析:(1);(2);(3);(4)【分析】(1)利用提公因式法因式分解即可;(2)先提出负号,再利用完全平方公式法因式分解即可;(3)先提公因式,再利用完全平方公式法因式分解即可;(4)先运用平方差公式法分解为,再运用平方差公式法分解,即可求解.【详解】解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣16;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法——提公因式法、公式法、分组分解法、十字相乘法是解题的关键.19.(1);(2).【分析】(1)由代入消元法解方程组,即可得到答案;(2)由加减消元法解方程组,即可得到答案.【详解】解:(1)把①代入②,得,解得:,把代入①,得;∴方程组的解为;解析:(1);(2).【分析】(1)由代入消元法解方程组,即可得到答案;(2)由加减消元法解方程组,即可得到答案.【详解】解:(1)把①代入②,得,解得:,把代入①,得;∴方程组的解为;(2),整理得:由①②,得,∴,把代入①,得,∴方程组的解为.【点睛】本题考查了解二元一次方程组,解题的关键是掌握加减消元法、代入消元法解方程组.20.【分析】分别将每个一元一次不等式求解,然后求出公共解集即可.【详解】解:解不等式①得:解不等②得:所以原不等式组的解集为:【点睛】本题考查一元一次不等式组的解法,根据相关要求分解析:【分析】分别将每个一元一次不等式求解,然后求出公共解集即可.【详解】解:解不等式①得:解不等②得:所以原不等式组的解集为:【点睛】本题考查一元一次不等式组的解法,根据相关要求分步计算是重点.三、解答题21.(1);理由见解析;(2).【分析】(1)由条件可得到可证得,可得到,结合条件可证明;(2)首先可得,,即可得,然后根据,即可求解.【详解】解:(1),理由如下:如图,,,,,解析:(1);理由见解析;(2).【分析】(1)由条件可得到可证得,可得到,结合条件可证明;(2)首先可得,,即可得,然后根据,即可求解.【详解】解:(1),理由如下:如图,,,,,,,,;(2)平分,,,,,,,,,.【点睛】本题主要考查平行线的判定和性质、平角以及角平分线的定义,掌握平行线的判定和性质是解题的关键.22.(1)A、B两种纪念品的价格分别为10元和5元;(2)该商店共有3种进货方案(3)若时,购进52件A纪念品,48件B纪念品获利最大;若时,购进50件A纪念品,50件B纪念品获利最大;若时,此时三种进解析:(1)A、B两种纪念品的价格分别为10元和5元;(2)该商店共有3种进货方案(3)若时,购进52件A纪念品,48件B纪念品获利最大;若时,购进50件A纪念品,50件B纪念品获利最大;若时,此时三种进货方案获利相同.【分析】(1)设A种纪念品每件x元,B种纪念品每件y元,根据购进A种纪念品8件,B种纪念品3件,需要95元和购进A种纪念品5件,B种纪念品6件,需要80元,列出方程组,再进行求解即可;(2)设商店最多可购进A纪念品m件,则购进B纪念品(100-m)件,根据购买这100件纪念品的资金不少于750元,但不超过764元,列出不等式组,再进行求解即可;(3)将总利润y表示成所进A纪念品件数x的函数,分类讨论,根据函数的单调性判断那种方案利润最大.【详解】解:(1)设A、B两种纪念品的价格分别为x元和y元,则,解得.答:A、B两种纪念品的价格分别为10元和5元.(2)设购买A种纪念品m件,则购买B种纪念品(100-m)件,则750≤10m+5(100-m)≤764,解得50≤m≤52.8,∵m为正整数,∴m=50,51,52,即有三种方案.第一种方案:购A种纪念品50件,B种纪念品50件;第二种方案:购A种纪念品51件,B种纪念品49件;第三种方案:购A种纪念品52件,B种纪念品48件;(3)设商家购进x件A纪念品,所获利润为y,则y=ax+(100-x)(5-a)=(2a-5)x+500-100a.∵商家出售的纪念品均不低于成本,,即0≤a≤5.①若2a-5>0即时,y=(2a-5)x+500-100a,y随x增大而增大.此时购进52件A纪念品,48件B纪念品获利最大.②若2a-5<0,即时,y=(2a-5)x+500-100a,y随x增大而减小.此时购进50件A纪念品,50件B纪念品获利最大.③若2a-5=0,即时,则y=250,为常数函数,此时三种进货方案获利相同.【点睛】本题考查二元一次方程组的应用,一元一次不等式组的应用和一次函数的应用.(1)能根据题意找出合适的等量关系是解决此问的关键;(2)能根据“资金不少于750元,但不超过764元”建立不等式组是解题关键;(3)中能分类讨论是解决此问的关键.23.(1)教师4人,学生46人;(2)54元【分析】(1)根据班教师加学生一共去了50人,门票共需810元,列出两个等式,求解即可;(2)门店的门票费减去网购的门票费就等于节省的钱.【详解】解解析:(1)教师4人,学生46人;(2)54元【分析】(1)根据班教师加学生一共去了50人,门票共需810元,列出两个等式,求解即可;(2)门店的门票费减去网购的门票费就等于节省的钱.【详解】解:设这个班参与活动的教师有x人,学生有y人,∵千佛山景区成人票每张30元,学生票按成人票五折优惠,由题意得:解得:答:这个班参与活动的教师有4人,学生有46人.(2)由(1)求得这个班参与活动的教师有4人,学生有46人.∴网购的总费用为:28×4+14×46=756(元)∴节省了:810-756=54(元).答:该班级全部网上购票,能省54元.【点睛】本题考查了二元一次方程组的应用,读懂题意找出等量关系,列出等式并解出二元一次方程组是解题的一般思路.24.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.25.【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根据三角形的内角和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论