2026届四川省广安市武胜烈面中学校高一数学第一学期期末教学质量检测试题含解析_第1页
2026届四川省广安市武胜烈面中学校高一数学第一学期期末教学质量检测试题含解析_第2页
2026届四川省广安市武胜烈面中学校高一数学第一学期期末教学质量检测试题含解析_第3页
2026届四川省广安市武胜烈面中学校高一数学第一学期期末教学质量检测试题含解析_第4页
2026届四川省广安市武胜烈面中学校高一数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届四川省广安市武胜烈面中学校高一数学第一学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可以得到的近似值为()A. B.C. D.2.若函数的定义域是()A. B.C. D.3.已知函数的部分图像如图所示,则正数A值为()A. B.C. D.4.平行于同一平面的两条直线的位置关系是A.平行 B.相交或异面C.平行或相交 D.平行、相交或异面5.已知幂函数的图象过点,则的值为()A. B.1C.2 D.46.函数y=1+x+的部分图象大致为()A. B.C. D.7.设a>0,b>0,化简的结果是()A. B.C. D.-3a8.直线l:ax+y﹣3a=0与曲线y有两个公共点,则实数a的取值范围是A.[,] B.(0,)C.[0,) D.(,0)9.下列哪组中的两个函数是同一函数()A与 B.与C.与 D.与10.若,,则sin=A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形半径为8,弧长为12,则中心角为__________弧度,扇形面积是________12.如图,在棱长均相等的正四棱锥最终,为底面正方形的重心,分别为侧棱的中点,有下列结论:①平面;②平面平面;③;④直线与直线所成角的大小为其中正确结论的序号是______.(写出所有正确结论的序号)13.已知命题“∀x∈R,e x≥a”14.计算:________.15.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________16.如图,已知圆柱的轴截面是矩形,,是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线与所成角的正切值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,两相邻对称中心之间的距离为(1)求函数的最小正周期和的解析式.(2)求函数的单调递增区间.18.已知有半径为1,圆心角为a(其中a为给定的锐角)的扇形铁皮OMN,现利用这块铁皮并根据下列方案之一,裁剪出一个矩形.方案1:如图1,裁剪出的矩形ABCD的顶点A,B在线段ON上,点C在弧MN上,点D在线段OM上;方案2:如图2,裁剪出的矩形PQRS的顶点P,S分别在线段OM,ON上,顶点Q,R在弧MN上,并且满足PQ∥RS∥OE,其中点E为弧MN的中点.(1)按照方案1裁剪,设∠NOC=,用表示矩形ABCD的面积S1,并证明S1的最大值为;(2)按照方案2裁剪,求矩形PQRS的面积S2的最大值,并与(1)中的结果比较后指出按哪种方案可以裁剪出面积最大的矩形.19.如图,在圆锥中,已知,圆的直径,是弧的中点,为的中点.(1)求异面直线和所成的角的正切值;(2)求直线和平面所成角的正弦值.20.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.21.已知函数(其中,)的图象与轴的任意两个相邻交点间的距离为,且直线是函数图象的一条对称轴.(1)求的值;(2)求的单调递减区间;(3)若,求的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】将一个圆的内接正边形等分成个等腰三角形;根据题意,可知个等腰三角形的面积和近似等于圆的面积,从而可求的近似值.【详解】将一个圆的内接正边形等分成个等腰三角形,设圆的半径为,则,即,所以.故选:B.2、C【解析】根据偶次根号下非负,分母不等于零求解即可.【详解】解:要使函数有意义,则需满足不等式,解得:且,故选:C3、B【解析】根据图象可得函数的周期,从而可求,再根据对称轴可求,结合图象过可求.【详解】由图象可得,故,而时,函数取最小值,故,故,而,故,因为图象过,故,故,故选:B.4、D【解析】根据线面平行的位置关系及线线位置关系的分类及定义,可由已知两直线平行于同一平面,得到两直线的位置关系【详解】解:若,且则与可能平行,也可能相交,也有可能异面故平行于同一个平面的两条直线的位置关系是平行或相交或异面故选【点睛】本题考查的知识点是空间线线关系及线面关系,熟练掌握空间线面平行的位置关系及线线关系的分类及定义是详解本题的关键,属于基础题5、C【解析】设出幂函数的解析式,利用给定点求出解析式即可计算作答.【详解】依题意,设,则有,解得,于得,所以.故选:C6、D【解析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.【详解】当x=1时,y=1+1+sin1=2+sin1>2,排除A、C;当x→+∞时,y→+∞,排除B.故选:D.【点睛】本题考查了函数图象的识别,抓住函数图象的差异是解题关键,属于基础题.7、D【解析】由分数指数幂的运算性质可得结果.【详解】因为,,所以.故选:D.8、C【解析】根据直线的点斜式方程可得直线过定点,曲线表示以为圆心,1为半径的半圆,作出图形,利用数形结合思想求出两个极限位置的斜率,即可得解.【详解】直线,即斜率为且过定点,曲线为以为圆心,1为半径的半圆,如图所示,当直线与半圆相切,为切点时(此时直线的倾斜角为钝角),圆心到直线的距离,,解得,当直线过原点时斜率,即,则直线与半圆有两个公共点时,实数的取值范围为:[0,),故选:C【点睛】本题主要考查圆的方程与性质,直线与圆的位置关系,考查了数形结合思想的应用,属于中档题.9、D【解析】根据同一函数的概念,逐项判断,即可得出结果.【详解】A选项,的定义域为,的定义域为,定义域不同,故A错;B选项,定义域为,的定义域为,定义域不同,故B错;C选项,的定义域为,的定义域为,定义域不同,故C错;D选项,与的定义域都为,且,对应关系一致,故D正确.故选:D.10、B【解析】因为,,所以sin==,故选B考点:本题主要考查三角函数倍半公式的应用点评:简单题,注意角的范围二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】详解】试题分析:根据弧长公式得,扇形面积考点:弧度制下弧长公式、扇形面积公式的应用12、①②③【解析】连接AC,易得PC∥OM,可判结论①证得平面PCD∥平面OMN,可判结论②正确由勾股数可得PC⊥PA,得到OM⊥PA,可判结论③正确根据线线平行先找到直线PD与直线MN所成的角为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,可判④错误【详解】如图,连接AC,易得PC∥OM,所以PC∥平面OMN,结论①正确同理PD∥ON,所以平面PCD∥平面OMN,结论②正确由于四棱锥的棱长均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA,又PC∥OM,所以OM⊥PA,结论③正确由于M,N分别为侧棱PA,PB的中点,所以MN∥AB,又四边形ABCD为正方形,所以AB∥CD,所以直线PD与直线MN所成的角即为直线PD与直线CD所成的角,为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,故④错误故答案为①②③【点睛】本题考查线面平行、面面平行,考查线线角,考查学生分析解决问题的能力,属于中档题13、a≤0【解析】根据∀x∈R,e x≥a成立,【详解】因为∀x∈R,e所以e 则a≤0,故答案为:a≤014、【解析】由,利用正弦的和角公式求解即可【详解】原式,故答案为:【点睛】本题考查正弦的和角公式的应用,考查三角函数的化简问题15、7【解析】设至少需要计算n次,则n满足,即,由于,故要达到精确度要求至少需要计算7次16、【解析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是矩形,AA1=2AB所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2故答案为:2.点睛:求两条异面直线所成角关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据相邻对称中心之间间隔可求得最小正周期和,由此可得解析式;(2)令,解不等式即可得到所求单调递增区间.小问1详解】两相邻对称中心之间的距离为,的最小正周期,,解得:,;【小问2详解】令,解得:,的单调递增区间为.18、(1),证明见解析;(2),方案1可以裁剪出面积最大的矩形.【解析】(1)分别用含有的三角函数表示,写出矩形的面积,利用三角函数求最值;(2)利用(1)的结论,根据对称性知,矩形的最大面积为,然后利用作差法比较大小即可【小问1详解】在图1中,,,,,,,当时,矩形最大面积为,得证.【小问2详解】在图(2)中,设与边,分别交于点,,由(1)的结论,可得矩形的最大面积为,根据对称性知,矩形的最大面积为.因为为锐角,所以,于是.因此,.故按照方案1可以裁剪出面积最大的矩形,其最大面积为.19、(1)2;(2)【解析】(1)由三角形中位线定理可得∥,则可得是异面直线和所成的角,然后在中求解即可,(2)直线与平面所成的角,应先作出直线在平面内的射影,则斜线与射影所成的角即为所求.过点O向平面PAC作垂线,则可证得即为直线与平面所成的角,进而求出其正弦值【详解】(1)因为分别是和的中点所以∥,所以异面直线和所成的角为,在中,,是弧的中点,为的中点,所以,因为平面,平面,所以,因为所以,(2)因为,为的中点,所以,因为平面,平面,所以,因为,所以平面因为平面,所以平面平面,在平面中,过作于,则平面,连结,则是在平面上的射影,所以是直线和平面所成的角在中,在中,20、(1)(2)【解析】(1)根据函数过点代入解析式,即可求得的值;(2)由(1)可得函数的解析式,结合函数的单调性求出x的取值范围.【详解】解:(1)∵函数的图象经过点,即,可得;(2)由(1)得,即,,【点睛】本题考查待定系数法求函数解析式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论