版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京市西城66中高一数学第一学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线与直线互相垂直,则这两条直线的交点坐标为()A. B.C. D.2.平行线与之间的距离等于()A. B.C. D.3.已知,,且,均为锐角,那么()A. B.或-1C.1 D.4.若命题:,则命题的否定为()A. B.C. D.5.已知函数,若关于的不等式恰有一个整数解,则实数的最小值是A. B.C. D.6.素数也叫质数,部分素数可写成“”的形式(是素数),法国数学家马丁•梅森就是研究素数的数学家中成就很高的一位,因此后人将“”形式(是素数)的素数称为梅森素数.2018年底发现的第个梅森素数是,它是目前最大的梅森素数.已知第个梅森素数为,第个梅森素数为,则约等于(参考数据:)()A. B.C. D.7.设定义在R上的函数满足,且,当时,,则A. B.C. D.8.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边经过点,那么的值是()A. B.C. D.9.已知函数的定义域为,则函数的定义域为()A. B.C. D.10.关于x的方程恰有一根在区间内,则实数m的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点为______12.意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的“悬链线问题”.双曲余弦函数,就是一种特殊的悬链线函数,其函数表达式为,相应的双曲正弦函数的表达式为.设函数,若实数m满足不等式,则m的取值范围为___________.13.命题,,则为______.14.某地街道呈现东—西、南—北向的网格状,相邻街距都为1,两街道相交的点称为格点.若以互相垂直的两条街道为坐标轴建立平面直角坐标系,根据垃圾分类要求,下述格点为垃圾回收点:,,,,,.请确定一个格点(除回收点外)___________为垃圾集中回收站,使这6个回收点沿街道到回收站之间路程的和最短.15.在平面直角坐标系中,动点P到两条直线与的距离之和等于2,则点P到坐标原点的距离的最小值为_________.16.已知函数,若在上是增函数,且直线与的图象在上恰有一个交点,则的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足,.设甲合作社的投入为(单位:万元),两个合作社的总收益为(单位:万元).(1)当甲合作社的投入为25万元时,求两个合作社的总收益;(2)如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元?18.设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}(Ⅰ)求A∩B,(∁UA)∪(∁UB);(Ⅱ)设集合C={x|m+1<x<2m-1},若B∩C=C,求实数m的取值范围19.已知点及圆.(1)若直线过点且与圆心的距离为1,求直线的方程;(2)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程;(3)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由20.已知方程(1)若方程表示一条直线,求实数的取值范围;(2)若方程表示的直线的斜率不存在,求实数的值,并求出此时的直线方程;(3)若方程表示的直线在轴上的截距为,求实数的值;(4)若方程表示的直线的倾斜角是45°,求实数的值21.已知函数,其中.(1)若对任意实数,恒有,求的取值范围;(2)是否存在实数,使得且?若存在,则求的取值范围;若不存在,则加以证明.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】时,直线分别化为:,此时两条直线不垂直.时,利用两条直线垂直可得:,解得.联立方程解出即可得出.【详解】时,直线分别化为:,此时两条直线不垂直.时,由两条直线垂直可得:,解得.综上可得:.联立,解得,.∴这两条直线的交点坐标为.故选:【点睛】本题考查了直线相互垂直、分类讨论方法、方程的解法,考查了推理能力与计算能力,属于基础题.2、C【解析】,故选3、A【解析】首先确定角,接着求,,最后根据展开求值即可.【详解】因为,均为锐角,所以,所以,,所以.故选:A.【点睛】(1)给值求值问题一般是正用公式将所求“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角的三角函数值,代入展开式即可(2)通过求所求角的某种三角函数值来求角,关键点在选取函数,常遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,选正弦较好4、D【解析】根据存在量词的否定是全称量词可得结果.【详解】根据存在量词的否定是全称量词可得命题的否定为.故选:D5、A【解析】将看作整体,先求的取值范围,再根据不等式恰有一个整点和函数的图像,推断参数,的取值范围【详解】做出函数的图像如图实线部分所示,由,得,若,则满足不等式,不等式至少有两个整数解,不满足题意,故,所以,且整数解只能是4,当时,,所以,选择A【点睛】本题考查了分段函数的性质,一元二次不等式的解法,及整体代换思想,数形结合思想的应用,需要根据题设条件,将数学语言转化为图形表达,再转化为参数的取值范围6、C【解析】根据两数远远大于1,的值约等于,设,运用指数运算法则,把指数式转化对数式,最后求出的值.【详解】因为两数远远大于1,所以的值约等于,设,因此有.故选C【点睛】本题考查了数学估算能力,考查了指数运算性质、指数式转化为对数式,属于基础题.7、C【解析】结合函数的周期性和奇偶性可得,代入解析式即可得解.【详解】由,可得.,所以.由,可得.故选C.【点睛】本题主要考查了函数的周期性和奇偶性,着重考查了学生的转化和运算能力,属于中档题.8、A【解析】根据三角函数的定义计算可得结果.【详解】因为,,所以,所以.故选:A9、B【解析】根据函数的定义域求出的范围,结合分母不为0求出函数的定义域即可【详解】由题意得:,解得:,由,解得:,故函数的定义域是,故选:B10、D【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解.【详解】方程对应的二次函数设为:因为方程恰有一根属于,则需要满足:①,,解得:;②函数刚好经过点或者,另一个零点属于,把点代入,解得:,此时方程为,两根为,,而,不合题意,舍去把点代入,解得:,此时方程为,两根为,,而,故符合题意;③函数与x轴只有一个交点,横坐标属于,,解得,当时,方程的根为,不合题意;若,方程的根为,符合题意综上:实数m的取值范围为故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、1和【解析】由,解得的值,即可得结果【详解】因为,若,则,即,整理得:可解得:或,即函数的零点为1和,故答案为1和.【点睛】本题主要考查函数零点的计算,意在考查对基础知识的理解与应用,属于基础题12、【解析】先判断为奇函数,且在R上为增函数,然后将转化为,从而有,进而可求出m的取值范围【详解】由题意可知,的定义域为R,因为,所以为奇函数.因为,且在R上为减函数,所以由复合函数的单调性可知在R上为增函数.又,所以,所以,解得.故答案为:.13、,【解析】由全称命题的否定即可得解.【详解】因为命题为全称命题,所以为“,”.故答案为:,.14、【解析】根据题意,设满足题意得格点为,这6个回收点沿街道到回收站之间路程的和为,故,再分别求和的最小值时的即可得答案.【详解】解:设满足题意得格点为,这6个回收点沿街道到回收站之间路程和为,则,令,由于其去掉绝对值为一次函数,故其最小值在区间端点值,所以代入得,所以当时,取得最小值,同理,令,代入得所以当或时,取得最小值,所以当,或时,这6个回收点沿街道到回收站之间路程的和最小,由于是一个回收点,故舍去,所以当,这6个回收点沿街道到回收站之间路程的和最小,故格点为故答案为:15、【解析】∵3x﹣y=0与x+3y=0的互相垂直,且交点为原点,∴设点P到两条直线的距离分别为a,b,则a≥0,b≥0,则a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴当a=1时,的距离,故答案为16、【解析】由正弦函数的单调性以及图象的分析得出的取值范围.【详解】因为在上是增函数,所以,解得因为直线与的图象在上恰有一个交点,所以,解得,综上.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)88.5万元(2)该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【解析】(1)先确定甲乙合作社投入量,再分别代入对应收益函数,最后求和得结果,(2)先根据甲收益函数,分类讨论,再根据对应函数单调性确定最值取法,最后比较大小确定最大值【详解】解:(1)当甲合作社投入为25万元时,乙合作社投入为47万元,此时两个个合作社的总收益为:(万元)(2)甲合作社的投入为万元,则乙合作社的投入为万元,当时,则,.令,得,则总收益为,显然当时,函数取得最大值,即此时甲投入16万元,乙投入56万元时,总收益最大,最大收益为89万元、当时,则,则,则在上单调递减,.即此时甲、乙总收益小于87万元.又,∴该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【点睛】本题考查利用分段函数模型求函数最值,考查基本分析求解能力,属中档题.18、(Ⅰ){x|x<1或x≥5},(Ⅱ)(-∞,3].【解析】(Ⅰ)求出集合A,B,由此能出A∩B,(∁UA)∪(∁UB)(Ⅱ)由集合C={x|m+1<x<2m﹣1},B∩C=C,得C⊆B,当C=∅时,2m﹣1<m+1,当C≠∅时,由C⊆B得,由此能求出m的取值范围【详解】解:(Ⅰ)∵全集U=R,集合A={x|2x-1≥1}={x|x≥1},B={x|x2-4x-5<0}={x|-1<x<5}∴A∩B={x|1≤x<5},(CUA)∪(CUB)={x|x<1或x≥5}(Ⅱ)∵集合C={x|m+1<x<2m-1},B∩C=C,∴C⊆B,当C=∅时,解得当C≠∅时,由C⊆B得,解得:2<m≤3综上所述:m的取值范围是(-∞,3]【点睛】本题考查交集、补集、并集的求法,考查实数的取值范围的求法,考查交集、补集、并集集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题19、(1)或;(2);(3)不存在.【解析】(1)设出直线方程,结合点到直线距离公式,计算参数,即可.(2)证明得到点P为MN的中点,建立圆方程,即可.(3)将直线方程代入圆方程,结合交点个数,计算a的范围,计算直线的斜率,计算a的值,即可【详解】(1)直线斜率存在时,设直线的斜率为,则方程为,即.又圆的圆心为,半径,由,解得.所以直线方程为,即.当的斜率不存在时,的方程为,经验证也满足条件即直线的方程为或.(2)由于,而弦心距,所以.所以恰为的中点故以为直径的圆的方程为.(3)把直线代入圆的方程,消去,整理得.由于直线交圆于两点,故,即,解得.则实数的取值范围是设符合条件的实数存在,由于垂直平分弦,故圆心必在上.所以的斜率,而,所以.由于,故不存在实数,使得过点的直线垂直平分弦.【点睛】考查了点到直线距离公式,考查了圆方程计算方法,考查了直线斜率计算方法,难度偏难20、(1);(2);;(3);(4).【解析】(1)先令,的系数同时为零时得到,即得时方程表示一条直线;(2)由(1)知时的系数为零,方程表示的直线的斜率不存在,即得结果;(3)由(1)知的系数同为零时,直线在轴上的截距存在,解得截距构建关系,即解得参数m;(4)由(1)知,的系数为零时,直线的斜率存在,解得斜率构建关系式,解得参数m.【详解】解:(1)当,的系数不同时为零时,方程表示一条直线令,解得或;令,解得或所以,的系数同时为零时,故若方程表示一条直线,则,即实数的取值范围为;(2)由(1)知当时,,方程表示的直线的斜率不存在,此时直线方程为;(3)易知且时,直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 秋人教版历史八年级上册课件:第5单元 第17课 中国工农红军长征
- 外科基本技能图谱:术后心理护理课件
- 2026年江西医学高等专科学校高职单招职业适应性测试参考题库有答案解析
- 《信息安全导论》-第5章 公钥密码基础设施
- 社群引流活动策划方案(3篇)
- 暑期心愿活动策划方案(3篇)
- 各种门店活动策划方案(3篇)
- 2026年电化学储能与电气传动的结合
- 三年(2023-2025)湖南中考语文真题分类汇编:专题01 字音字形、词语运用(原卷版)
- 泸州市公安局关于招聘警务辅助人员的(124人)参考题库必考题
- 在线网课学习课堂《人工智能(北理 )》单元测试考核答案
- 水性漆化学安全技术书(MSDS)
- 《中国近现代史纲要(2023版)》课后习题答案合集汇编
- 酒吧服务员手册
- 教育部研究生、本科、高职学科分类及专业目录
- 国开2023春计算机组网技术形考任务一参考答案
- 医疗器械公司任职文件
- 输电线路基础知识输电线路组成与型式
- 南昌工程学院施工组织设计
- GA 1808-2022军工单位反恐怖防范要求
- 《中国特色社会主义》期末试卷
评论
0/150
提交评论