上海市嘉定区第二中学2026届高二上数学期末质量检测模拟试题含解析_第1页
上海市嘉定区第二中学2026届高二上数学期末质量检测模拟试题含解析_第2页
上海市嘉定区第二中学2026届高二上数学期末质量检测模拟试题含解析_第3页
上海市嘉定区第二中学2026届高二上数学期末质量检测模拟试题含解析_第4页
上海市嘉定区第二中学2026届高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市嘉定区第二中学2026届高二上数学期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知A(-1,1,2),B(1,0,-1),设D在直线AB上,且,设C(λ,+λ,1+λ),若CD⊥AB,则λ的值为()A. B.-C. D.2.如图为学生做手工时画的椭圆(其中网格是由边长为1的正方形组成),它们的离心率分别为,则()A. B.C. D.3.已知平面上两点,则下列向量是直线的方向向量是()A. B.C. D.4.已知双曲线,过点作直线l,若l与该双曲线只有一个公共点,这样的直线条数为()A.1 B.2C.3 D.45.椭圆上的一点M到其左焦点的距离为2,N是的中点,则等于()A.1 B.2C.4 D.86.设数列的前项和为,当时,,,成等差数列,若,且,则的最大值为()A. B.C. D.7.已知等比数列{an}的前n项和为S,若,且,则S3等于()A.28 B.26C.28或-12 D.26或-108.如下图,边长为2的正方体中,O是正方体的中心,M,N,T分别是棱BC,,的中点,下列说法错误的是()A. B.C. D.到平面MON的距离为19.已知、分别是椭圆的左、右焦点,A是椭圆上一动点,圆C与的延长线、的延长线以及线段相切,若为其中一个切点,则()A. B.C. D.与2的大小关系不确定10.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.11.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件12.太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O:,则下列说法中正确的是()①函数是圆O的一个太极函数②圆O的所有非常数函数的太极函数都不能为偶函数③函数是圆O的一个太极函数④函数的图象关于原点对称是为圆O的太极函数的充要条件A.①② B.①③C.②③ D.③④二、填空题:本题共4小题,每小题5分,共20分。13.记为等差数列{}的前n项和,若,,则=_________.14.如图,E,F分别是三棱锥的棱AD,BC的中点,,,,则异面直线AB与EF所成的角为______.15.已知四面体中,,分别在,上,且,,若,则________.16.已知命题:,总有.则为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的顶点是坐标原点,焦点在轴的正半轴上,是抛物线上的点,点到焦点的距离为1,且到轴的距离是(1)求抛物线的标准方程;(2)假设直线通过点,与抛物线相交于,两点,且,求直线的方程18.(12分)已知抛物线,过焦点的直线l交抛物线C于M、N两点,且线段中点的纵坐标为2(1)求直线l的方程;(2)设x轴上关于y轴对称的两点P、Q,(其中P在Q的右侧),过P的任意一条直线交抛物线C于A、B两点,求证:始终被x轴平分19.(12分)已知数列的前项和为,且,(1)求的通项公式;(2)求的最小值20.(12分)求下列函数的导数:(1);(2).21.(12分)四棱锥,底面为矩形,面,且,点在线段上,且面.(1)求线段的长;(2)对于(1)中的,求直线与面所成角的正弦值.22.(10分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设D(x,y,z),根据求出D(,,0),再根据CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【详解】设D(x,y,z),则=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故选:B【点睛】(1)本题主要考查向量的线性运算和空间向量垂直的坐标表示,意在考查学生对这些知识的掌握水平和分析推理能力.(2).2、D【解析】根据图知分别得到椭圆、、的半长轴和半短轴,再由求解比较即可.【详解】由图知椭圆的半长轴和半短轴分别为:,椭圆的半长轴和半短轴分别为:,椭圆的半长轴和半短轴分别为:,所以,,,所以,故选:D3、D【解析】由空间向量的坐标运算和空间向量平行的坐标表示,以及直线的方向向量的定义可得选项.【详解】解:因为两点,则,又因为与向量平行,所以直线的方向向量是,故选:D.4、D【解析】先确定双曲线的右顶点,再分垂直轴、与轴不垂直两种情况讨论,当与轴不垂直时,可设直线方程为,联立直线与抛物线方程,消元整理,再分、两种情况讨论,即可得解【详解】解:根据双曲线方程可知右顶点为,使与有且只有一个公共点情况为:①当垂直轴时,此时过点的直线方程为,与双曲线只有一个公共点,②当与轴不垂直时,可设直线方程为联立方程可得当即时,方程只有一个根,此时直线与双曲线只有一个公共点,当时,,整理可得即故选:D5、C【解析】先利用椭圆定义得到,再利用中位线定理得即可.【详解】由椭圆方程,得,由椭圆定义得,又,,又为的中点,为的中点,线段为中位线,∴.故选:C.6、A【解析】根据等差中项写出式子,由递推式及求和公式写出和,进而得出结果.【详解】解:由,,成等差数列,可得,则,,,可得数列中,每隔两项求和是首项为,公差为的等差数列.则,,则的最大值可能为.由,,可得.因为,,,即,所以,则,当且仅当时,,符合题意,故的最大值为.故选:A.【点睛】本题考查等差数列的性质和递推式的应用,考查分析问题能力,属于难题.7、C【解析】根据等比数列的通项公式列出方程求解,直接计算S3即可.【详解】由可得,即,所以,又,解得,所以,即,当时,,所以,当时,,所以,故选:C8、D【解析】建立空间直角坐标系,进而根据空间向量的坐标运算判断A,B,C;对D,算出平面MON的法向量,进而求出向量在该法向量方向上投影的绝对值,即为所求距离.【详解】如图建立空间直角坐标系,则.对A,,则,则A正确;对B,,则,则B正确;对C,,则C正确;对D,设平面MON的法向量为,则,取z=1,得,,所以到平面MON的距离为,则D错误.故选:D.9、A【解析】由题意知,圆C是的旁切圆,点是圆C与轴的切点,设圆C与直线的延长线、分别相切于点、,由切线的性质可知:,,,结合椭圆的定义,即可得出结果.【详解】由题意知,圆C是的旁切圆,点是圆C与轴的切点,设圆C与直线的延长线、分别相切于点、,则由切线的性质可知:,,,所以,所以,所以.故选A【点睛】本题主要考查圆与圆锥曲线的综合,熟记椭圆的定义,以及切线的性质即可,属于常考题型.10、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D11、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.12、B【解析】①③可以通过分析奇偶性和结合图象证明出符合要求,②④可以举出反例.【详解】是奇函数,且与圆O的两交点坐标为,能够将圆O的周长和面积同时等分为两个部分,故符合题意,①正确;同理函数是圆O的一个太极函数,③正确;例如,是偶函数,也能将将圆O的周长和面积同时等分为两个部分,故②错误;函数的图象关于原点对称不是为圆O的太极函数的充要条件,例如为奇函数,但不满足将圆O的周长和面积同时等分为两个部分,所以④错误;故选:B二、填空题:本题共4小题,每小题5分,共20分。13、18【解析】根据等差数列通项和前n项和公式即可得到结果.【详解】设等差数列的公差为,由,得,解得,所以故答案为:1814、【解析】取的中点,连结,由分别为的中点,可得(或其补角)为异面直线AB与EF所成的角,在求解即可.【详解】取的中点,连结由分别为的中点,则所以(或其补角)为异面直线AB与EF所成的角由分别是的中点,则,又在中,,则所以,又,所以在直角中,故答案为:15、【解析】连接,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接∵四面体中,,分别在,上,且,∴∴∴.故答案为:16、,使得【解析】全称命题改否定,首先把全称量词改成特称量词,然后把后面结论改否定即可.【详解】解:因为命题,总有,所以的否定为:,使得故答案为,使得【点睛】本题考查了全称命题的否定,全称命题(特称命题)改否定,首先把全称量词(特称量词)改成特称量词(全称量词),然后把后面结论改否定即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据抛物线的定义,结合到焦点、轴的距离求,写出抛物线方程.(2)直线的斜率不存在易得与不垂直与题设矛盾,设直线方程联立抛物线方程,应用韦达定理求,,进而求,由题设向量垂直的坐标表示有求直线方程即可.【详解】(1)由己知,可设抛物线的方程为,又到焦点的距离是1,∴点到准线的距离是1,又到轴的距离是,∴,解得,则抛物线方程是(2)假设直线的斜率不存在,则直线的方程为,与联立可得交点、的坐标分别为,,易得,可知直线与直线不垂直,不满足题意,故假设不成立,∴直线的斜率存在.设直线为,整理得,设,,联立直线与抛物线的方程得,消去,并整理得,于是,,∴,又,因此,即,∴,解得或当时,直线的方程是,不满足,舍去当时,直线的方程是,即,∴直线的方程是18、(1);(2)证明见解析.【解析】(1)设直线l的方程为:,联立方程,利用韦达定理可得结果;(2)设,借助韦达定理表示,即可得到结果.【详解】(1)由已知可设直线l的方程为:,联立方程组可得,设,则又因为,得,故直线l的方程为:即为;(2)由题意可设,可设过P的直线为联立方程组可得,显然设,则所以所以始终被x轴平分19、(1)(2)【解析】(1)由可求得的值,由可求得数列的通项公式;(2)求得,利用二次函数的基本性质可求得的最小值.【小问1详解】解:由题意可得,解得,所以,.当时,,当时,,也满足,故对任意的,.【小问2详解】解:,所以,当或时,取得最小值,且最小值为.20、(1);(2).【解析】(1)根据导数的加法运算法则,结合常见函数的导数进行求解即可;(2)根据导数的加法和乘法的运算法则,结合常见函数的导数进行求解即可.【小问1详解】;【小问2详解】.21、(1)1(2)【解析】(1)根据线面垂直得到,再由相似比得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论