版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省威远县龙会中学2026届高二上数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过双曲线的右焦点F作一条渐近线的垂线,垂足为M,且FM的中点A在双曲线上,则双曲线离心率e等于()A. B.C. D.2.江西省重点中学协作体于2020年进行了一次校际数学竞赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是()A.得分在之间的共有40人B.从这100名参赛者中随机选取1人,其得分在的概率为0.5C.这100名参赛者得分的中位数为65D.可求得3.过椭圆右焦点作x轴的垂线,并交C于A,B两点,直线l过C的左焦点和上顶点.若以线段AB为直径的圆与有2个公共点,则C的离心率e的取值范围是()A. B.C. D.4.一直线过点,则此直线的倾斜角为()A.45° B.135°C.-45° D.-135°5.瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点,其欧拉线方程为,则顶点C的坐标是()A.() B.()C.() D.()6.已知一个圆锥体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.7.已知集合M={0,x},N={1,2},若M∩N={2},则M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能确定8.设,,则与的等比中项为()A. B.C. D.9.命题“”为真命题一个充分不必要条件是()A. B.C. D.10.圆心,半径为的圆的方程是()A. B.C. D.11.已知向量,则()A.5 B.6C.7 D.812.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数的递增区间是,则实数______.14.已知点P是抛物线上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为______________15.已知函数是定义域上的单调递增函数,是的导数且为定义域上的单调递减函数,请写出一个满足条件的函数的解析式___________16.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图,则a=______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列的前n项和为,,(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个等差数列,记插入的这n个数之和为,求数列的前n项和18.(12分)已知椭圆,斜率为的动直线与椭圆交于A,B两点,且直线与圆相切.(1)若,求直线的方程;(2)求三角形的面积的取值范围.19.(12分)已知函数(1)求函数在区间上的最大值和最小值;(2)求出方程的解的个数20.(12分)已知函数.(1)当时,讨论的单调性;(2)当时,,求a的取值范围.21.(12分)已知首项为1的等比数列,满足(1)求数列的通项公式;(2)求数列的前n项和22.(10分)已知椭圆经过点,左焦点为.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆的右顶点,过点且斜率为的直线交椭圆于两点,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意可表示出渐近线方程,进而可知的斜率,表示出直线方程,求出的坐标进而求得A点坐标,代入双曲线方程整理求得和的关系式,进而求得离心率【详解】:由题意设相应的渐近线:,则根据直线的斜率为,则的方程为,联立双曲线渐近线方程求出,则,,则的中点,把中点坐标代入双曲线方程中,即,整理得,即,求得,即离心率为,故答案为:2、C【解析】根据给定的频率分布直方图,结合直方图的性质,逐项计算,即可求解.【详解】由频率分布直方图,可得A中,得分在之间共有人,所以A正确;B中,从100名参赛者中随机选取1人,其得分在中的概率为,所以B正确;D中,由频率分布直方图的性质,可得,解得,所以D正确.C中,前2个小矩形面积之和为0.4,前3个小矩形面积之和为0.7,所以中位数在[60,70],这100名参赛者得分的中位数为,所以C不正确;故选:C.3、A【解析】求得以为直径的圆的圆心和半径,求得直线的方程,利用圆心到直线的距离小于半径列不等式,化简后求得椭圆离心率的取值范围.【详解】椭圆的左焦点,右焦点,上顶点,,所以为直径的圆的圆心为,半径为.直线的方程为,由于以线段为直径的圆与相交,所以,,,,,所以椭圆的离心率的取值范围是.故选:A4、A【解析】根据斜率公式求得直线的斜率,得到,即可求解.【详解】设直线的倾斜角为,由斜率公式,可得,即,因为,所以,即此直线的倾斜角为.故选:A.5、A【解析】根据题意,求得的外心,再根据外心的性质,以及重心的坐标,联立方程组,即可求得结果.【详解】因为,故的斜率,又的中点坐标为,故的垂直平分线的方程为,即,故△的外心坐标即为与的交点,即,不妨设点,则,即;又△的重心的坐标为,其满足,即,也即,将其代入,可得,,解得或,对应或,即或,因为与点重合,故舍去.故点的坐标为.故选:A.6、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B7、C【解析】集合M={0,x},N={1,2},若M∩N={2},则.所以.故选C.点睛:集合的交集即为由两个集合的公共元素组成的集合,集合的并集即由两集合的所有元素组成.8、C【解析】利用等比中项的定义可求得结果.【详解】由题意可知,与的等比中项为.故选:C.9、B【解析】求解命题为真命题的充要条件,再利用集合包含关系判断【详解】命题“”为真命题,则≤1,只有是的真子集,故选项B符合题意故选:B10、D【解析】根据圆心坐标及半径,即可得到圆的方程.【详解】因为圆心为,半径为,所以圆的方程为:.故选:D.11、A【解析】利用空间向量的模公式求解.【详解】因向量,所以,故选:A12、D【解析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求得二次函数的单调增区间,即可求得参数的值.【详解】因为二次函数开口向上,对称轴为,故其单调增区间为,又由题可知:其递增区间是,故.故答案为:.14、【解析】由抛物线的定义得:,所以,当三点共线时,最小可得答案.【详解】如图所示:,由抛物线的定义得:,所以,由图象知:当三点共线时,最小,.故答案为:.15、(答案不唯一)【解析】由题意可得0,结合在定义域上为减函数可取.【详解】因为在定义域为单调增函数所以在定义域上0,又因为在定义域上为减函数,且大于等于0.所以可取(),(),满足条件所以可为().故答案为:(答案不唯一).16、3##【解析】由频率之和等于1,即矩形面积之和为1可得.【详解】由题知,解得.故答案为:0.3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)设等比数列公比为q,利用与关系可求q,在中令n=1可求;(2)根据等差数列前n项和公式可求,分析{}的通项公式,利用错位相减法求其前n项和.【小问1详解】设等比数列的公比为q,由己知,可得,两式相减可得,即,整理得,可知,已知,令,得,即,解得,故等比数列的通项公式为;【小问2详解】由题意知在与之间插入n个数,这个数组成以为首项的等差数列,∴,设{}前n项和为,①①×3:②①-②:18、(1)或(2)【解析】(1)设直线,利用圆心到直线的距离等于半径,即可得到方程,求出,即可得解;(2)设,,,利用圆心到直线的距离等于半径,得到,再联立直线与椭圆方程,消元列出韦达定理,利用弦长公式表示出,再根据及基本不等式求出,最后再计算直线斜率不存在时三角形的面积,即可得解;【小问1详解】解:圆,圆心为,半径;设直线,即,则,解得,所以或;【小问2详解】解:因为直线的斜率存在,设,,,即,则,所以,即,联立,消元整理得,所以,,所以所以因为,所以,当且仅当,即时取等号,所以,当轴时,取,,则,此时,所以;19、(1)f(x)的最大值为7,最小值为-33;(2)见解析.【解析】(1)求函数f(x)的导数,列表求其单调性即可;(2)求出函数f(x)的极值即可.【小问1详解】023+-+f(-2)=-33↗f(0)=7↘f(2)=-1↗f(3)=7∴f(x)的最大值为7,最小值为-33;【小问2详解】02+-+↗f(0)=7↘f(2)=-1↗当a<-1或a>7时,方程有一个根;当a=-1或7时,方程有两个根;当-1<a<7时,方程有三个根.20、(1)在上单调递减,在上单调递增(2)【解析】(1)研究当时的导数的符号即可讨论得到的单调性;(2)对原函数求导,对a的范围分类讨论即可得出答案.【小问1详解】当时,,令,则,所以在上单调递增.又因为,所以当时,,当时,,所以在上单调递减,在上单调递增.【小问2详解】,且.①当时,由(1)可知当时,所以在上单调递增,则,符合题意.②当时,,不符合题意,舍去.③当时,令,则,则,,当时,,所以在上单调递减,当时,,不符合题意,舍去.综上,a的取值范围为.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用21、(1)(2)【解析】(1)根据已知条件求得数列的公比,由此求得.(2)利用错位相减求和法求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务分析在制造业企业经营中的应用
- 建筑工程项目电梯施工方案新
- 防暑降温方案
- 燃气施工现场安全技术交底
- 保理业务流程及财务核算细则
- 电梯操作安全注意事项培训
- 商业地产运营管理策略分析报告
- 行政后勤团队工作总结与反思
- 客服中心沟通技巧与情绪管理
- 部编版四年级语文教案与教学反思
- 2025年-《中华民族共同体概论》课后习题答案-新版
- 苏少版(五线谱)(2024)八年级上册音乐全册教案
- 2025年龙江森工面试题及答案
- 2024-2025学年成都市高一上英语期末考试题(含答案和音频)
- GB/T 308.1-2013滚动轴承球第1部分:钢球
- GB/T 18993.1-2020冷热水用氯化聚氯乙烯(PVC-C)管道系统第1部分:总则
- GA/T 798-2008排油烟气防火止回阀
- 中医舌、脉象的辨识与临床应用 点击吸下载
- 小沈阳《四大才子》欢乐喜剧人台词
- 国开电大员工招聘与配置(试题24道含答案)
- Q∕GDW 12154-2021 电力安全工器具试验检测中心建设规范
评论
0/150
提交评论